Skip to main content

Current State and Recent Changes of Glaciers in the Patagonian Andes (~37 °S to 55 °S)

  • Chapter
  • First Online:
Freshwaters and Wetlands of Patagonia

Abstract

This chapter addresses the distribution and characteristics of the Patagonian glaciers together with their recent changes and hydrological implications. Recently published national glacier inventories for the Andes between ca. 37 °S and 55 °S indicate that this region contains 24,000 ice masses covering ca. 26,100 km2. This includes the Southern Patagonia Icefield (SPI), the largest ice mass of the Southern Hemisphere outside Antarctica. The region also includes several thousand smaller ice masses, such as mountain glaciers, valley glaciers, rock glaciers, and perennial snowfields, which collectively are crucial water resources to sustain nature contributions to people, socioeconomic activities, and hydropower generation. Recent findings in mass balance and ice dynamics along the Patagonian Andes highlight the processes behind the mass change and differential response of glaciers to climate change. Although most glaciers have experienced considerable thinning and recession in recent decades, they have not responded in the same manner to climate change. Ice-dynamic processes, such as calving, drive mass change of larger Patagonian glaciers. However, ice melt increases, and snowfall depletion have been attributed as the main cause for the shrinkage of the smaller ice masses. It is expected that glacier retreat will continue impacting runoff and glacier-related hazards. Modeling studies suggest strongest impacts due to this recent ice mass loss can be expected, particularly during the dry season. In concordance with the increase in the number and size of proglacial lakes, there has been an increase in the magnitude and frequency of glacial lake outburst floods in the Patagonian Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aniya M, Sato H, Naruse R, Skvarca P, Casassa G (1996) The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm Eng Remote Sens 62(12):1361–1369

    Google Scholar 

  • Ayala Á, Farías-Barahona D, Huss M, Pellicciotti F, McPhee J, Farinotti D (2020) Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile. Cryosphere 14(6):2005–2027. https://doi.org/10.5194/tc-14-2005-2020

    Article  Google Scholar 

  • Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20355–20362. https://doi.org/10.1029/97JB01696

  • Bahr DB, Pfeffer WT, Kaser G (2015) A review of volume-area scaling of glaciers: Volume-Area Scaling. Rev Geophys 53(1):95–140. https://doi.org/10.1002/2014RG000470

    Article  Google Scholar 

  • Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Glob Planet Chang 59(1):138–148. https://doi.org/10.1016/j.gloplacha.2006.11.031

    Article  Google Scholar 

  • Barcaza G, Nussbaumer SU, Tapia G, Valdés J, García J-L, Videla Y, Albornoz A, Arias V (2017) Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann Glaciol 58(75pt2):166–180. https://doi.org/10.1017/aog.2017.28

    Article  Google Scholar 

  • Barsch D (1996) Rock Glaciers. Springer, Berlin

    Google Scholar 

  • Benn DI, Warren CR, Mottram RH (2007) Calving processes and the dynamics of calving glaciers. Earth Sci Rev 82(3–4):143–179

    Article  Google Scholar 

  • Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131(3):98–106. https://doi.org/10.1016/j.geomorph.2011.05.002

    Article  Google Scholar 

  • Bown F, Rivera A, Zenteno P, Bravo C, Cawkwell F (2014) First Glacier inventory and recent Glacier variation on Isla Grande de Tierra Del Fuego and Adjacent Islands in Southern Chile. In: Kargel JS, Leonard GJ, Bishop MP, Kääb A, Raup BH (eds) Global land ice measurements from space. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 661–674

    Chapter  Google Scholar 

  • Bown F, Rivera A, Pętlicki M, Bravo C, Oberreuter J, Moffat C (2019) Recent ice dynamics and mass balance of Jorge Montt Glacier, Southern Patagonia Icefield. J Glaciol 65(253):732–744. https://doi.org/10.1017/jog.2019.47

    Article  Google Scholar 

  • Braun MH, Malz P, Sommer C, Farías-Barahona D, Sauter T, Casassa G, Soruco A, Skvarca P, Seehaus TC (2019) Constraining glacier elevation and mass changes in South America. Nat Clim Chang 9(2):130–136. https://doi.org/10.1038/s41558-018-0375-7

    Article  Google Scholar 

  • Bravo C, Bozkurt D, Gonzalez-Reyes Á, Quincey DJ, Ross AN, Farías-Barahona D, Rojas M (2019a) Assessing snow accumulation patterns and changes on the Patagonian Icefields. Front Environ Sci 7. https://doi.org/10.3389/fenvs.2019.00030

  • Bravo C, Quincey DJ, Ross AN, Rivera A, Brock B, Miles E, Silva A (2019b) Air temperature characteristics, distribution, and impact on modeled ablation for the South Patagonia Icefield. J Geophys Res Atmos 124(2):907–925. https://doi.org/10.1029/2018JD028857

    Article  Google Scholar 

  • Bravo C, Bozkurt D, Ross AN, Quincey DJ (2021) Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields. Sci Rep 11(1):16847. https://doi.org/10.1038/s41598-021-95725-w

    Article  CAS  Google Scholar 

  • Carrasco JF, Osorio R, Casassa G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol 54(186):538–550. https://doi.org/10.3189/002214308785837002

    Article  Google Scholar 

  • Carrivick JL, Davies BJ, James WHM, Quincey DJ, Glasser NF (2016) Distributed ice thickness and glacier volume in southern South America. Glob Planet Chang 146:122–132. https://doi.org/10.1016/j.gloplacha.2016.09.010

    Article  Google Scholar 

  • Casassa G (1987) Ice thickness deduced from gravity anomalies on Soler Glacier, Nef Glacier and the Northern Patagonia Icefield. Bullet Glacier Res 4:43–57

    Google Scholar 

  • Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100. https://doi.org/10.3189/172756409787769744

    Article  Google Scholar 

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of Glacier mass balance and related terms. UNESCO-IHP, Paris

    Google Scholar 

  • Collao-Barrios G, Gillet-Chaulet F, Favier V, Casassa G, Berthier E, Dussaillant I, Mouginot J, Rignot E (2018) Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield. J Glaciol:1–15. https://doi.org/10.1017/jog.2018.46

  • Condom T, Coudrain A, Sicart JE, Théry S (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55°S). Glob Planet Chang 59(1–4):189–202. https://doi.org/10.1016/j.gloplacha.2006.11.021

    Article  Google Scholar 

  • Cuffey KM, Paterson WSB (2010) The physics of Glaciers, fourth edition, 4th edn. Academic Press, Amsterdam

    Google Scholar 

  • Davies BJ, Glasser NF (2012) Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (~AD 1870). J Glaciol 58(2012):1063–1084

    Article  Google Scholar 

  • De Angelis H (2014) Hypsometry and sensitivity of the mass balance to changes in equilibrium-line altitude: the case of the Southern Patagonia Icefield. J Glaciol 60(219):14–28. https://doi.org/10.3189/2014JoG13J127

    Article  Google Scholar 

  • Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2015) Ice loss and slope stability in high-mountain regions. In: Snow and ice-related hazards, risks and disasters. Elsevier, pp 521–561

    Chapter  Google Scholar 

  • Dirección General de Aguas (2014) Estimación de volúmenes de hielo mediante sondajes de radar en zonas Norte, Central y Sur, 1st edn. Gobierno de Chile, Ministerio de Obras Públicas, Dirección, General de Aguas, Unidad de Glaciología y Nieve, Santiago de Chile

    Google Scholar 

  • Dussaillant A, Benito G, Buytaert W, Carling P, Meier C, Espinoza F (2009) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Nat Hazards 54(2):469–481. https://doi.org/10.1007/s11069-009-9479-8

    Article  Google Scholar 

  • Dussaillant I, Berthier E, Brun F (2018) Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods. Front Earth Sci 6. https://doi.org/10.3389/feart.2018.00008

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Rabatel A, Pitte P, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci:1–7. https://doi.org/10.1038/s41561-019-0432-5

  • Falaschi D, Bravo C, Masiokas M, Villalba R, Rivera A (2013) First Glacier inventory and recent changes in Glacier area in the Monte San Lorenzo region (47°S), Southern Patagonian Andes, South America. Arct Antarct Alp Res 45(1):19–28. https://doi.org/10.1657/1938-4246-45.1.19

    Article  Google Scholar 

  • Falaschi D, Tadono T, Masiokas M (2015) Rock glaciers in the patagonian Andes: an inventory for the Monte San Lorenzo (cerro cochrane) massif, 47° s. Geogr Ann Ser B 97(4):769–777. https://doi.org/10.1111/geoa.12113

    Article  Google Scholar 

  • Falaschi D, Lenzano MG, Villalba R, Bolch T, Rivera A, Lo Vecchio A (2019) Six decades (1958–2018) of geodetic Glacier mass balance in Monte San Lorenzo, Patagonian Andes. Front Earth Sci 7:326. https://doi.org/10.3389/feart.2019.00326

    Article  Google Scholar 

  • Falaschi D, Rivera A, Lo Vecchio Repetto A, Moragues S, Villalba R, Rastner P, Zeller J, Salcedo AP (2021) Evolution of surface characteristics of three debris-covered Glaciers in the Patagonian Andes from 1958 to 2020. Front Earth Sci 9:671854. https://doi.org/10.3389/feart.2021.671854

    Article  Google Scholar 

  • Farinotti D, Huss M, Bauder A, Funk M, Truffer M (2009) A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. J Glaciol 55(191):422–430

    Article  Google Scholar 

  • Farinotti D, Brinkerhoff DJ, Clarke GKC, Fürst JJ, Frey H, Gantayat P, Gillet-Chaulet F, Girard C, Huss M, Leclercq PW, Linsbauer A, Machguth H, Martin C, Maussion F, Morlighem M, Mosbeux C, Pandit A, Portmann A, Rabatel A, Ramsankaran R, Reerink TJ, Sanchez O, Stentoft PA, Singh Kumari S, Pelt WJJ van, Anderson B, Benham T, Binder D, Dowdeswell JA, Fischer A, Helfricht K, Kutuzov S, Lavrentiev I, McNabb R, Gudmundsson GH, Li H, Andreassen LM (2017) How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11(2):949–970. https://doi.org/10.5194/tc-11-949-2017

    Article  Google Scholar 

  • Farinotti D, Huss M, Fürst JJ, Landmann J, Machguth H, Maussion F, Pandit A (2019) A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat Geosci 2019:1. https://doi.org/10.1038/s41561-019-0300-3

    Article  CAS  Google Scholar 

  • Ferri L, Dussaillant I, Zalazar L, Masiokas MH, Ruiz L, Pitte P, Gargantini H, Castro M, Berthier E, Villalba R (2020) Ice mass loss in the Central Andes of Argentina between 2000 and 2018 derived from a new Glacier inventory and satellite stereo-imagery. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.530997

  • Gantayat P, Kulkarni AV, Srinivasan J (2014) Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India. J Glaciol 60(220):277–282. https://doi.org/10.3189/2014JoG13J078

    Article  Google Scholar 

  • García J-L, Hall BL, Kaplan MR, Gómez GA, De Pol-Holz R, García VJ, Schaefer JM, Schwartz R (2020) 14C and 10Be dated Late Holocene fluctuations of Patagonian glaciers in Torres del Paine (Chile, 51°S) and connections to Antarctic climate change. Quaternary Science Reviews 246:106541. https://doi.org/10.1016/j.quascirev.2020.106541

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26(1):215–230. https://doi.org/10.1175/JCLI-D-12-00001.1

    Article  Google Scholar 

  • Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D (2020) The Central Chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol 40(1):421–439. https://doi.org/10.1002/joc.6219

    Article  Google Scholar 

  • Gelman Constantin J, Ruiz L, Villarosa G, Outes V, Bajano FN, He C, Bajano H, Dawidowski L (2020) Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness. Cryosphere 14(12):4581–4601. https://doi.org/10.5194/tc-14-4581-2020

    Article  Google Scholar 

  • Giardino JR, Regmi NR, Vitek JD (2011) Rock Glaciers. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer Netherlands, Dordrecht, pp 943–948

    Chapter  Google Scholar 

  • Giese BS, Urizar SC, Fučkar NS (2002) Southern hemisphere origins of the 1976 climate shift. Geophys Res Lett 29(2):1–4. https://doi.org/10.1029/2001GL013268

    Article  Google Scholar 

  • Glasser NF, Harrison S, Jansson KN, Anderson K, Cowley A (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat Geosci:1–5. https://doi.org/10.1038/ngeo1122

  • Glasser NF, Holt TO, Evans ZD, Davies BJ, Pelto M, Harrison S (2016) Recent spatial and temporal variations in debris cover on Patagonian glaciers. Geomorphology 273:202–216. https://doi.org/10.1016/j.geomorph.2016.07.036

    Article  Google Scholar 

  • GlaThiDa Consortium (2019) GLACIER THICKNESS DATABASE (GlaThiDa) – Global Terrestrial Network for Glaciers. World Glacier Monitoring Service, Zurich, Switzerland

    Google Scholar 

  • Gourlet P, Rignot E, Rivera A, Casassa G (2016) Ice thickness of the northern half of the Patagonia Icefields of South America from high-resolution airborne gravity surveys. Geophys Res Lett 43(1):241–249. https://doi.org/10.1002/2015GL066728

    Article  Google Scholar 

  • Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212. https://doi.org/10.3189/S0260305500015834

    Article  Google Scholar 

  • Harrison S, Kargel JS, Huggel C, Reynolds J, Shugar DH, Betts RA, Emmer A, Glasser N, Haritashya UK, Klimeš J, Reinhardt L, Schaub Y, Wiltshire A, Regmi D, Vilímek V (2018) Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere 12(4):1195–1209. https://doi.org/10.5194/tc-12-1195-2018

  • Hata S, Sugiyama S (2021) Changes in the ice-front position and surface elevation of Glaciar Pío XI, an advancing calving Glacier in the Southern Patagonia Icefield, from 2000–2018. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.576044

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115

    Article  Google Scholar 

  • Hock R, Rasul G (2019) Chapter 2: High mountain areas. In: Special report on the ocean and cryosphere in a changing climate

    Google Scholar 

  • Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, Jackson M, Kääb A, Kang S, Kutuzov S, Milner A, Molau U, Morin S, Orlove B, Steltzer H (2019) Chapter 2: High mountain areas. In: Special report on the ocean and cryosphere in a changing climate. IPCC

    Google Scholar 

  • Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Chang 8(2):135–140. https://doi.org/10.1038/s41558-017-0049-x

    Article  Google Scholar 

  • IANIGLA, MAyDS (2018) Resumen ejecutivo de los resultados del Inventario Nacional de Glaciares. IANIGLA-CONICET, Mendoza

    Google Scholar 

  • Iribarren Anacona P, Mackintosh A, Norton KP (2015) Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes: GLACIER AND PERMAFROST HAZARDS IN THE EXTRATROPICAL ANDES. Earth Surf Proc Landforms 40(1):2–21. https://doi.org/10.1002/esp.3524

    Article  Google Scholar 

  • Iribarren Anacona P, Kinney J, Schaefer M, Harrison S, Wilson R, Segovia A, Mazzorana B, Guerra F, Farías D, Reynolds JM, Glasser NF (2018) Glacier protection laws: potential conflicts in managing glacial hazards and adapting to climate change. Ambio 47(8):835–845. https://doi.org/10.1007/s13280-018-1043-x

    Article  CAS  Google Scholar 

  • Johansen KS, Alfthan B, Baker E, Hesping M, Schoolmeester T, Verbist K et al (2018) The Andean glacier and water atlas: the impact of glacier retreat on water resources. UNESCO Publishing

    Google Scholar 

  • Koppes M, Conway H, Rasmussen LA, Chernos M (2011) Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, northern Patagonia, 1950–2005. Cryosphere 5(3):791–808. https://doi.org/10.5194/tc-5-791-2011

    Article  Google Scholar 

  • Lenaerts JTM, van den Broeke MR, van Wessem JM, van de Berg WJ, van Meijgaard E, van Ulft LH, Schaefer M (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J Clim 27(12):4607–4621. https://doi.org/10.1175/JCLI-D-13-00579.1

    Article  Google Scholar 

  • Lliboutry L (1956) Nieves y glaciares de Chile: fundamentos de glaciologia. Ediciones de la Universidad de Chile

    Google Scholar 

  • Malmros JK, Mernild SH, Wilson R, Yde JC, Fensholt R (2016) Glacier area changes in the central Chilean and Argentinean Andes 1955–2013/14. J Glaciol 62(232):391–401. https://doi.org/10.1017/jog.2016.43

    Article  Google Scholar 

  • Marzeion B, Hock R, Anderson B, Bliss A, Champollion N, Fujita K, Huss M, Immerzeel WW, Kraaijenbrink P, Malles J, Maussion F, Radić V, Rounce DR, Sakai A, Shannon S, Wal R, Zekollari H (2020) Partitioning the uncertainty of ensemble projections of global Glacier mass change. Earth’s Future 8(7). https://doi.org/10.1029/2019EF001470

  • Masiokas MH, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268

    Article  Google Scholar 

  • Masiokas MH, Delgado S, Pitte P, Berthier E, Villalba R, Skvarca P, Ruiz L, Ukita J, Yamanokuchi T, Tadono T, Marinsek S, Couvreux F, Zalazar L (2015) Inventory and recent changes of small glaciers on the northeast margin of the Southern Patagonia Icefield, Argentina. J Glaciol 61(227):511–523. https://doi.org/10.3189/2015JoG14J094

    Article  Google Scholar 

  • Masiokas MH, Cara L, Villalba R, Pitte P, Luckman BH, Toum E, Christie DA, Le Quesne C, Mauget S (2019) Streamflow variations across the Andes (18°–55°S) during the instrumental era. Scientific Reports 9(1):1–13. https://doi.org/10.1038/s41598-019-53981-x

  • Meier MF, Post A (1987) Fast tidewater Glaciers. J Geophys Res Solid Earth Planets 92(B9):9051–9058

    Article  Google Scholar 

  • Meier WJ-H, Grießinger J, Hochreuther P, Braun MH (2018) An updated multi-temporal Glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front Earth Sci 6:62. https://doi.org/10.3389/feart.2018.00062

    Article  Google Scholar 

  • Melkonian AK, Willis MJ, Pritchard ME, Rivera A, Bown F, Bernstein SA (2013) Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere 7(3):823–839. https://doi.org/10.5194/tc-7-823-2013

    Article  Google Scholar 

  • Mernild SH, Liston GE, Hiemstra C, Wilson R (2017) The Andes Cordillera. Part III: glacier surface mass balance and contribution to sea level rise (1979-2014): GLACIER SURFACE MASS BALANCE AND CONTRIBUTION TO SEA LEVEL RISE. Int J Climatol 37(7):3154–3174. https://doi.org/10.1002/joc.4907

    Article  Google Scholar 

  • Millan R, Rignot E, Rivera A, Martineau V, Mouginot J, Zamora R, Uribe J, Lenzano G, De Fleurian B, Li X, Gim Y, Kirchner D (2019) Ice thickness and bed elevation of the Northern and Southern Patagonian Icefields. Geophys Res Lett:2019GL082485. https://doi.org/10.1029/2019GL082485

  • Minowa M, Sugiyama S, Sakakibara D, Sawagaki T (2015) Contrasting glacier variations of Glaciar Perito Moreno and Glaciar Ameghino. Southern Patagonia Icefield Ann Glaciol 56(70):26–32. https://doi.org/10.3189/2015AoG70A020

    Article  Google Scholar 

  • Minowa M, Schaefer M, Sugiyama S, Sakakibara D, Skvarca P (2021) Frontal ablation and mass loss of the Patagonian icefields. Earth Planet Sci Lett 561:116811. https://doi.org/10.1016/j.epsl.2021.116811

    Article  CAS  Google Scholar 

  • Morlighem M, Rignot E, Seroussi H, Larour E, Ben Dhia H, Aubry D (2011) A mass conservation approach for mapping glacier ice thickness. Geophys Res Lett 38

    Google Scholar 

  • Paul F, Mölg N (2014) Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J Glaciol 60(224):1033–1043. https://doi.org/10.3189/2014JoG14J104

    Article  Google Scholar 

  • Paul F, Barry RG, Cogley JG, Frey H, Haeberli W, Ohmura A, Ommanney CSL, Raup B, Rivera A, Zemp M (2010) Recommendations for the compilation of glacier inventory data from digital sources. Ann Glaciol 50(53):119–126

    Article  Google Scholar 

  • Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y (2007) The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob Planet Chang 56(1–2):101–110

    Article  Google Scholar 

  • Rasmussen LA, Conway H, Raymond CF (2007) Influence of upper air conditions on the Patagonia icefields. Global and Planetary Change 59(1–4):203–216

    Google Scholar 

  • Reinthaler J, Paul F, Granados HD, Rivera A, Huggel C (2019) Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery. J Glaciol 65(252):542–556. https://doi.org/10.1017/jog.2019.30

    Article  Google Scholar 

  • RGI Consortium (2017) Randolph Glacier Inventory – a dataset of global Glacier outlines: version 6.0: global land ice measurements from space. Digital Media, Colorado, USA

    Google Scholar 

  • Rivera A, Casassa G (2002) Ice thickness measurements on the Southern Patagonia Icefield. In: Casassa G, Sepúlveda FV, Sinclair RM (eds) The Patagonian Icefields. Springer US, Boston, MA, pp 101–115

    Chapter  Google Scholar 

  • Rivera A, Aravena JC, Casassa G (1997) Recent fluctuations of Glaciar Pio XI, Pagagonia: discussion of a glacial surge hypothesis. Mt Res Dev 17(4):309–322

    Article  Google Scholar 

  • Rivera A, Casassa G, Acuña C (2001) Mediciones de espesor en glaciares de Chile centro-sur. Investigaciones Geográficas 35:67–100. https://doi.org/10.5354/0719-5370.2001.27738

    Article  Google Scholar 

  • Rivera A, Benham T, Casassa G, Bamber J, Dowdeswell JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change 59(1–4):126–137

    Google Scholar 

  • Rivera A, Bown F, Casassa G, Acuna C, Clavero J (2005) Glacier shrinkage and negative mass balance in the Chilean Lake District (40 degrees S). Hydrolog Sci J-Journal Des Sciences Hydrologiques 50(6):963–974

    Google Scholar 

  • Rojas F, Wegener L (2020) Inventario de glaciares en Argentina: polémicas públicas y disputas de sentido. In: Historia Ambiental Argentina-Brasil, paisaje y patrimonio: impresiones de la historia en el ambiente natural

    Google Scholar 

  • Rott H, Stuefer M, Siegel A, Skvarca P, Eckstaller A (1998) Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys Res Lett 25(9):1407–1410

    Article  Google Scholar 

  • Ruiz L, Trombotto D (2012) Mountain permafrost distribution in the Andes of Chubut (Argentina) based on a statistical model. In: 10th international permafrost conference. Salekhard, Yamal-nenets Russia, pp 365–370

    Google Scholar 

  • Ruiz L, Berthier E, Masiokas M, Pitte P, Villalba R (2015) First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images. J Glaciol 61(229):908–922. https://doi.org/10.3189/2015JoG14J134

  • Ruiz L, Berthier E, Viale M, Pitte P, Masiokas MH (2017) Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. Cryosphere 11(1):619–634. https://doi.org/10.5194/tc-11-619-2017

    Article  Google Scholar 

  • Sagredo EA, Lowell TV (2012) Climatology of Andean glaciers: a framework to understand glacier response to climate change. Glob Planet Chang 86–87:101–109. https://doi.org/10.1016/j.gloplacha.2012.02.010

    Article  Google Scholar 

  • Sakakibara D, Sugiyama S, Sawagaki T, Marinsek S, Skvarca P (2013) Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann Glaciol 54:131–138. https://doi.org/10.3189/2013AoG63A236

    Article  Google Scholar 

  • Sauter T (2020) Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields. Hydrol Earth Syst Sci 24(4):2003–2016. https://doi.org/10.5194/hess-24-2003-2020

    Article  Google Scholar 

  • Schaefer M, Machguth H, Falvey M, Casassa G (2013) Modeling past and future surface mass balance of the Northern Patagonia Icefield. J Geophys Res Earth Surf 118(2):571–588. https://doi.org/10.1002/jgrf.20038

    Article  Google Scholar 

  • Schaefer M, Machguth H, Falvey M, Casassa G, Rignot E (2015) Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere 9(1):25–35. https://doi.org/10.5194/tc-9-25-2015

    Article  Google Scholar 

  • Schaefer M, Rodriguez JL, Scheiter M, Casassa G (2017) Climate and surface mass balance of Mocho Glacier, Chilean Lake District, 40°S. J Glaciol 63(238):218–228. https://doi.org/10.1017/jog.2016.129

    Article  Google Scholar 

  • Schaefer M, Fonseca-Gallardo D, Farías-Barahona D, Casassa G (2020) Surface energy fluxes on Chilean glaciers: measurements and models. Cryosphere 14(8):2545–2565. https://doi.org/10.5194/tc-14-2545-2020

    Article  Google Scholar 

  • Schneider C, Kilian R, Glaser M (2007a) Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes. Glob Planet Chang 59(1–4):175–188. https://doi.org/10.1016/j.gloplacha.2006.11.033

    Article  Google Scholar 

  • Schneider C, Schnirch M, Acuña C, Casassa G, Kilian R (2007b) Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades. Glob Planet Chang 59(1–4):87–100. https://doi.org/10.1016/j.gloplacha.2006.11.023

    Article  Google Scholar 

  • Stuefer M, Rott H, Skvarca P (2007) Glaciar Perito Moreno, Patagonia: climate sensitivities and glacier characteristics preceding the 2003/04 and 2005/06 damming events. J Glaciol 53(180):3–16

    Article  CAS  Google Scholar 

  • The Randolph Consortium, Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, MöLg N, Paul F, Radic V, Rastner P, Raup BH, Rich J, Sharp MJ (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552. https://doi.org/10.3189/2014JoG13J176

    Article  Google Scholar 

  • Truffer M, Motyka RJ (2016) Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings: SUBAQUEOUS GLACIER MELT. Rev Geophys 54(1):220–239. https://doi.org/10.1002/2015RG000494

    Article  Google Scholar 

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7:69. https://doi.org/10.3389/fenvs.2019.00069

    Article  Google Scholar 

  • Warren CR, Sugden DE (1993) The Patagonian Icefields: a glaciological review. Arct Alp Res 25(4):316–331. https://doi.org/10.2307/1551915

    Article  Google Scholar 

  • Wilson R, Carrión D, Rivera A (2016) Detailed dynamic, geometric and supraglacial moraine data for Glaciar Pio XI, the only surge-type glacier of the Southern Patagonia Icefield. Ann Glaciol 57(73):119–130. https://doi.org/10.1017/aog.2016.32

    Article  Google Scholar 

  • Wilson R, Glasser NF, Reynolds JM, Harrison S, Iribarren Anacona P, Schaefer M, Shannon S (2018) Glacial lakes of the Central and Patagonian Andes. Glob Planet Chang 162:275–291. https://doi.org/10.1016/j.gloplacha.2018.01.004

    Article  Google Scholar 

  • Zalazar L, Ferri L, Castro M, Gargantini H, Gimenez M, Pitte P, Ruiz L, Masiokas M, Costa G, Villalba R (2020) Spatial distribution and characteristics of Andean ice masses in Argentina: results from the first National Glacier Inventory. J Glaciol:1–12. https://doi.org/10.1017/jog.2020.55

  • Zamora R, Uribe J, Oberreuter J, Rivera A (2017) Ice thickness surveys of the Southern Patagonian Ice Field using a low frequency ice penetrating radar system. In: 2017 first IEEE international symposium of geoscience and remote sensing (GRSS-CHILE). IEEE, Valdivia, Chile, pp 1–4

    Google Scholar 

  • Zemp M, Zumbühl H, Nussbaumer S, Masiokas M, Espizua L, Pitte P (2011) Extending glacier monitoring into the Little Ice Age and beyond. PAGES News 19(2):67–69. https://doi.org/10.22498/pages.19.2.67

    Article  Google Scholar 

  • Zemp M, Huss M, Thibert E, Eckert N, McNabb R, Huber J, Barandun M, Machguth H, Nussbaumer SU, Gärtner-Roer I, Thomson L, Paul F, Maussion F, Kutuzov S, Cogley JG (2019) Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568(7752):382. https://doi.org/10.1038/s41586-019-1071-0

    Article  CAS  Google Scholar 

  • Zorzut V, Ruiz L, Rivera A, Pitte P, Villalba R, Medrzycka D (2020) Slope estimation influences on ice thickness inversion models: a case study for Monte Tronador glaciers, North Patagonian Andes. J Glaciol 66(260):996–1005. https://doi.org/10.1017/jog.2020.64

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is a tribute to all the explorers, researchers, and institutions, who contributed to our knowledge of Patagonian glaciers. LR, PP, and MM would like to thank IANIGLA-CONICET for support. We also thank Ryan Wilson for sharing the glacial lake inventory of the Patagonian Andes and Jose Luis Garcia for his constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz, L., Pitte, P., Rivera, A., Schaefer, M., Masiokas, M.H. (2022). Current State and Recent Changes of Glaciers in the Patagonian Andes (~37 °S to 55 °S). In: Mataloni, G., Quintana, R.D. (eds) Freshwaters and Wetlands of Patagonia. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-031-10027-7_4

Download citation

Publish with us

Policies and ethics