Skip to main content

Study of Elemental Composition and Properties of Volcanic Ash and Urban Dust Nanoparticles

  • Chapter
  • First Online:
Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences

Abstract

There is still a notable gap in the study of the chemical composition and properties of natural nanoparticles, which play a crucial role in biogeochemical cycles. This paper summarizes the methodology and recent results of isolation, study and quantitative elemental analysis of volcanic ash and urban dust nanoparticles. A combination of sedimentation, membrane filtration and field-flow fractionation in a rotating coiled column was used to isolate nanoparticles. The size and morphology of nanoparticles were characterized using complementary light scattering and scanning electron microscopy techniques. The content of major and trace elements in the initial samples and fractions of nanoparticles was determined by inductively coupled plasma atomic emission and mass spectrometry. It has been determined that the concentration of Cu, Zn, Ag, Cd, Sn, Sb, Hg, Pb, Tl, Bi in nanoparticles of Moscow dust may be tens and even hundreds of times higher, than in the initial polydisperse samples. The ashes from volcanoes Puyehue (Chile), Tolbachik, and Klyuchevskoy (Kamchatka, Russia) show that concentrations of toxic metals and metalloids in ash nanoparticles are also much higher than their bulk concentrations. The enrichment factors of nanoparticles with such elements as Ni, Cu, As, Se, Ag, Cd, Sn, Te, Hg, Tl, Pb, and Bi are in the range from 10 to 500. Single particle inductively coupled plasma mass spectrometry reveals that Ni, Zn, Tl, As and Hg in Tolbachik ash nanoparticles are not adsorbed on the particle surface but are contained only as individual nanophases (most likely oxides). Long-term aggregation stability of natural nanoparticles is shown, which confirms their important role in the transport of elements in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochella, M.F., Mogk, D.W., Ranville, J., Allen, I.C., Luther, G.W., Marr, L.C., McGrail, B.P., Murayama, M., Qafoku, N.P., Rosso, K.M., Sahai, N., Schroeder, P.A., Vikesland, P., Westerhoff, P., Yang, Y.: Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363(6434) (2019)

    Google Scholar 

  2. Taylor, D.A.: Dust in the wind. Environ. Health Perspect 110(2) (2002)

    Google Scholar 

  3. Sahai, N., Kaddour, H., Dalai, P., Wang, Z., Bass, G., Gao, M.: Mineral surface chemistry and nanoparticle-aggregation control membrane self-assembly. Sci. Rep. 7(1), 1–13 (2017)

    Article  Google Scholar 

  4. Xu, J., Campbell, J.M., Zhang, N., Hickey, W.J., Sahai, N.: Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? Astrobiology 12(8), 785–798 (2012)

    Article  Google Scholar 

  5. Lindenthal, A., Langmann, B., Pätsch, J., Lorkowski, I., Hort, M.: The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study. Biogeosciences 10(6), 3715–3729 (2013)

    Article  Google Scholar 

  6. Maters, E.C., Delmelle, P., Bonneville, S.: Atmospheric processing of volcanic glass: effects on iron solubility and redox speciation. Environ. Sci. Technol. 50(10), 5033–5040 (2016)

    Article  Google Scholar 

  7. Olgun, N., Duggen, S., Andronico, D., Kutterolf, S., Croot, P.L., Giammanco, S., Censi, P., Randazzo, L.: Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: results from nutrient-release experiments in seawater. Mar. Chem. 152, 32–42 (2013)

    Article  Google Scholar 

  8. Bains, S., Norris, R.D., Corfield, R.M., Faul, K.L.: Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407(6801), 171–174 (2000)

    Article  Google Scholar 

  9. Sigman, D.M., Boyle, E.A.: Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000)

    Article  Google Scholar 

  10. Cather, S.M., Dunbar, N.W., McDowell, F.W., McIntosh, W.C., Scholle, P.A.: Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse-silicic large igneous province (SLIP) hypothesis. Geosphere 5(3), 315–324 (2009)

    Article  Google Scholar 

  11. Houghton, J.: Global warming. Rep. Prog. Phys. 68(6), 1343–1403 (2005)

    Article  Google Scholar 

  12. Gottschalk, F., Nowack, B.: The release of engineered nanomaterials to the environment. J. Environ. Monit. 13(5), 1145 (2011)

    Article  Google Scholar 

  13. Kaur, J., Kaur, G., Sharma, S., Jeet, K.: Cereal starch nanoparticles—a prospective food additive: a review. Crit. Rev. Food Sci. Nutr. 58(7), 1097–1107 (2018)

    Article  Google Scholar 

  14. Caputo, F., De Nicola, M., Sienkiewicz, A., Giovanetti, A., Bejarano, I., Licoccia, S., Traversa, E., Ghibelli, L.: Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale 7(38), 15643–15656 (2015)

    Article  Google Scholar 

  15. Yang, D., Ma, P., Hou, Z., Cheng, Z., Li, C., Lin, J.: Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 44(6), 1416–1448 (2015)

    Article  Google Scholar 

  16. Liu, Y., Deng, Y., Dong, H., Liu, K., He, N.: Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Sci. China Chem. 60(3), 329–337 (2017)

    Article  Google Scholar 

  17. You, M., Zhong, J., Hong, Y., Duan, Z., Lin, M., Xu, F.: Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale 7(10), 4423–4431 (2015)

    Article  Google Scholar 

  18. Ray, P.C., Yu, H., Fu, P.P.: Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Heal. Part C. 27(1), 1–35 (2009)

    Article  Google Scholar 

  19. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  Google Scholar 

  20. Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Article  Google Scholar 

  21. Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007)

    Google Scholar 

  22. Ernst, W.G.: Overview of naturally occurring Earth materials and human health concerns. J. Asian Earth Sci. 59, 108–126 (2012)

    Article  Google Scholar 

  23. Trovato, M.C., Andronico, D., Sciacchitano, S., Ruggeri, R.M., Picerno, I., Di Pietro, A., Visalli, G.: Nanostructures: between natural environment and medical practice. Rev. Environ. Health. 33, 305–317 (2018)

    Article  Google Scholar 

  24. Horwell, C.J.: Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard. J. Environ. Monit. 9(10), 1107 (2007)

    Article  Google Scholar 

  25. Ermolin, M.S., Fedotov, P.S.: Separation and characterization of environmental nano- and submicron particles. Rev. Anal. Chem. 35(4), 185–199 (2016)

    Article  Google Scholar 

  26. Faucher, S., Le Coustumer, P., Lespes, G.: Nanoanalytics: history, concepts, and specificities. Environ. Sci. Pollut. Res. 1–15 (2018)

    Google Scholar 

  27. Wang, Y.: Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chem. Geol. 378–379, 1–23 (2014)

    Article  Google Scholar 

  28. Alekseyev, V.A.: Nanoparticles and nanofluids in “water–rock” interactions. Geochem. Int. 64(4), 343–355 (2019)

    Google Scholar 

  29. Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I., Karandashev, V.K., Fedyunina, N., Eskina, V.: Isolation and quantitative analysis of road dust nanoparticles. J. Anal. Chem. 72(5), 520–532 (2017)

    Article  Google Scholar 

  30. Ermolin, M.S., Fedotov, P.S., Karandashev, V.K., Shkinev, V.M.: Methodology for separation and elemental analysis of volcanic ash nanoparticles. J. Anal. Chem. 72(5), 533–541 (2017)

    Article  Google Scholar 

  31. Ivaneev, A.I., Faucher, S., Ermolin, M.S., Karandashev, V.K., Fedotov, P.S., Lespes, G.: Separation of nanoparticles from polydisperse environmental samples: comparative study of filtration, sedimentation, and coiled tube field-flow fractionation. Anal. Bioanal. Chem. 411(30), 8011–8021 (2019)

    Article  Google Scholar 

  32. Dzherayan, T.G., Ermolin, M.S., Vanifatova, N.G.: Effectiveness of the simultaneous application of capillary zone electrophoresis and static light scattering in the study of volcanic ash nano- and submicroparticles. J. Anal. Chem. 75(1), 67–72 (2020)

    Article  Google Scholar 

  33. Loosli, F., Wang, J., Sikder, M., Afshinnia, K., Baalousha, M.: Analysis of engineered nanomaterials (Ag, CeO2 and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations. Sci. Total Environ. 715, 136927 (2020)

    Article  Google Scholar 

  34. ISO/DIS 19749 Nanotechnologies—Measurements of particle size and shape distributions by scanning electron microscopy. International Organization of Standards (2018)

    Google Scholar 

  35. Bell, J.M.: BCR Draft Method for Particle Size Distributions by Scanning Electron Microscopy and Image Analysis. ICI Chemicals and Polymers Limited, Runcorn, England (1993)

    Google Scholar 

  36. Ivaneev, A.I., Ermolin, M.S., Fedotov, P.S.: Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches. J. Anal. Chem. 76(4), 413–429 (2021)

    Article  Google Scholar 

  37. Shkinev, V.M., Ermolin, M.S., Fedotov, P.S., Borisov, A.P., Karandashev, V.K., Spivakov, B.Y.: A set of analytical methods for the estimation of elemental and grain-size composition of volcanic ash. Geochem. Int. 54(13), 1252–1260 (2016)

    Article  Google Scholar 

  38. Fedotov, P.S., Ermolin, M.S., Karandashev, V.K., Ladonin, D.V.: Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta 130, 1–7 (2014)

    Article  Google Scholar 

  39. Adachi, K., Tainosho, Y.: Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017 (2004)

    Article  Google Scholar 

  40. Mummullage, S., Egodawatta, P., Ayoko, G.A., Goonetilleke, A.: Use of physicochemical signatures to assess the sources of metals in urban road dust. Sci. Total Environ. 541, 1303–1309 (2016)

    Article  Google Scholar 

  41. Varrica, D., Bardelli, F., Dongarrà, G., Tamburo, E.: Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 64, 18–24 (2013)

    Article  Google Scholar 

  42. Thorpe, A., Harrison, R.M.: Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Total Environ. 400(1–3), 270–282 (2008)

    Article  Google Scholar 

  43. McKenzie, E.R., Money, J.E., Green, P.G., Young, T.M.: Metals associated with stormwater-relevant brake and tire samples. Sci. Total Environ. 407(22), 5855–5860 (2009)

    Article  Google Scholar 

  44. Hjortenkrans, D.S.T., Bergbäck, B.G., Häggerud, A.V.: Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41(15), 5224–5230 (2007)

    Article  Google Scholar 

  45. Councell, T.B., Duckenfield, K.U., Landa, E.R., Callender, E.: Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38(15), 4206–4214 (2004)

    Article  Google Scholar 

  46. Jang, H.N., Seo, Y.C., Lee, J.H., Hwang, K.W., Yoo, J.I., Sok, C.H., Kim, S.H.: Formation of fine particles enriched by V and Ni from heavy oil combustion: anthropogenic sources and drop-tube furnace experiments. Atmos. Environ. 41(5), 1053–1063 (2007)

    Article  Google Scholar 

  47. Barefoot, R.R.: Distribution and speciation of platinum group elements in environmental matrices. TrAC - Trends Anal. Chem. 18(11), 702–707 (1999)

    Article  Google Scholar 

  48. Zereini, F., Wiseman, C., Beyer, J.M., Artelt, S., Urban, H.: Platinum, lead and cerium concentrations of street particulate matter (frankfurt am main, Germany). J. Soils Sediments. 1(3), 188–195 (2001)

    Article  Google Scholar 

  49. Mohammadi, S.Z., Karimi, M.A., Hamidian, H., Baghelani, Y.M., Karimzadeh, L.: Determination of trace amounts of Pd(II) and Rh(III) ions in PtIr alloy and road dust samples by flame atomic absorption spectrometry after simultaneous separation and preconcentration on non-modified magnetic nanoparticles. Sci. Iran. 18(6), 1636–1642 (2011)

    Article  Google Scholar 

  50. Okorie, I.A., Enwistle, J., Dean, J.R.: Platinum group elements in urban road dust. Curr. Sci. 109(5), 938–942 (2015)

    Article  Google Scholar 

  51. Ermolin, M.S., Fedotov, P.S., Malik, N.A., Karandashev, V.K.: Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 200, 16–22 (2018)

    Article  Google Scholar 

  52. Degueldre, C., Favarger, P.Y.: Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62(5), 1051–1054 (2004)

    Article  Google Scholar 

  53. Degueldre, C., Favarger, P.-Y., Rossé, R., Wold, S.: Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68(3), 623–628 (2006)

    Article  Google Scholar 

  54. Degueldre, C., Favarger, P.-Y.Y., Wold, S.: Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta. 555(2), 263–268 (2006)

    Article  Google Scholar 

  55. Laborda, F., Bolea, E., Jiménez-Lamana, J.: Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal. Chem. 86(5), 2270–2278 (2014)

    Article  Google Scholar 

  56. Ermolin, M.S., Ivaneev, A.I., Fedyunina, N.N., Fedotov, P.S.: Nanospeciation of metals and metalloids in volcanic ash using single particle inductively coupled plasma mass spectrometry. Chemosphere 281 (2021)

    Google Scholar 

  57. Rietmeijer, F.J.M., Mackinnon, I.D.R.: Bismuth oxide nanoparticles in the stratosphere Bi from which we derive the particle number densities (p.m.-3) for average. J. Geophys. Res. 102(96), 6621–6627 (1997)

    Article  Google Scholar 

  58. Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S.: Nanominerals, mineral nanoparticles, and earth systems. Science 319(5870), 1631–1635 (2008)

    Article  Google Scholar 

  59. Raiswell, R., Benning, L.G., Davidson, L., Tranter, M.: Nanoparticulate bioavailable iron minerals in icebergs and glaciers. Mineral. Mag. 72(1), 345–348 (2008)

    Article  Google Scholar 

  60. Tepe, N., Bau, M.: Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Sci. Total Environ. 488–489(1), 243–251 (2014)

    Google Scholar 

  61. Hawkings, J.R., Benning, L.G., Raiswell, R., Kaulich, B., Araki, T., Abyaneh, M., Stockdale, A., Koch-Müller, M., Wadham, J.L., Tranter, M.: Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018)

    Article  Google Scholar 

  62. Poulton, S.W., Raiswell, R.: Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem. Geol. 218(3–4), 203–221 (2005)

    Article  Google Scholar 

  63. Raiswell, R., Tranter, M., Benning, L.G., Siegert, M., De’ath, R., Huybrechts, P., Payne, T.: Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim. Cosmochim. Acta. 70(11), 2765–2780 (2006)

    Google Scholar 

  64. Kadar, E., Dyson, O., Handy, R.D., Al-Subiai, S.N.: Are reproduction impairments of free spawning marine invertebrates exposed to zero-valent nano-iron associated with dissolution of nanoparticles? Nanotoxicology 7(2), 135–143 (2013)

    Article  Google Scholar 

  65. Kadar, E., Fisher, A., Stolpe, B., Calabrese, S., Lead, J., Valsami-Jones, E., Shi, Z.: Colloidal stability of nanoparticles derived from simulated cloud-processed mineral dusts. Sci. Total Environ. 466–467, 864–870 (2014)

    Article  Google Scholar 

  66. Buffle, J., Wilkinson, K.J., Stoll, S., Filella, M., Zhang, J.: A generalized description of aquatic colloidal interactions: the three-culloidal component approach. Environ. Sci. Technol. 32(19), 2887–2899 (1998)

    Article  Google Scholar 

  67. Wang, H., Burgess, R.M., Cantwell, M.G., Portis, L.M., Perron, M.M., Wu, F., Ho, K.T.: Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon. Environ. Toxicol. Chem. 33(5), 1023–1029 (2014)

    Article  Google Scholar 

  68. Ermolin, M.S., Dzherayan, T.G., Vanifatova, N.G.: Stability of volcanic nanoparticles using combined capillary zone electrophoresis and laser diffraction. Environ. Chem. Lett. 19(1), 751–762 (2021)

    Article  Google Scholar 

  69. Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I., Karandashev, V.K., Fedyunina, N.N., Burmistrov, A.A.: A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere 210, 65–75 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ermolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fedotov, P.S., Ermolin, M.S., Ivaneev, A.I. (2023). Study of Elemental Composition and Properties of Volcanic Ash and Urban Dust Nanoparticles. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_5

Download citation

Publish with us

Policies and ethics