Skip to main content

Moon’s Formation from Gas-Dust Cloud: New Geochemical and Astronomical Data

  • Chapter
  • First Online:
Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences

Abstract

The original model of the Moon’ formation from the common with the Earth protoplanetary dust-gas cloud, developed by academician Galimov E. M. at Vernadsky Institute RAS, is considered. Recent geochemical data on siderophile elements and water at the Moon’ mantle have been studied. The possibilities of the originally used numerical framework for the accretion’ study are expanded, it is shown that the analytical extension provides correct results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartmann, W.K., Davis, D.R.: Satellite sized planetesimals and lunar origin. Icarus 24, 504–515 (1975)

    Article  Google Scholar 

  2. Cameron, A.G.W., Ward, W.: The origin of the Moon. In: Proceedings of the Lunar Conference 7th Houston, pp. 120–122 (1976)

    Google Scholar 

  3. Galimov, E.M.: Formation of the Moon and the Earth from a common supraplanetary gas-dust cloud. Geochem. Int. 49(6), 537–554 (2011)

    Article  Google Scholar 

  4. Galimov, E.M., Sidorov, Yu.I., Krivtsov, A.M., Zabrodin, A.V., Legkostupov, M.S., Eneev, T.M.: Dynamic model for the formation of the Earth-Moon system. Geochem. Int. 43(11), 1045–1055 (2005)

    Google Scholar 

  5. Melosh, H.J.: A new and improved equation of state for impact computations. In: Lunar Planet Conference 31st, 1903 (2000)

    Google Scholar 

  6. Canap, R.M.: Simulations of a late lunar forming impact. Icarus 168, 433–456 (2004)

    Google Scholar 

  7. Stivenson, D.: Earth formation: combining physical models with isotopic and elemental constraints. Geochim. Cosmochim. Acta, 15th Goldshmidt Conference Abstract, A382 (2005)

    Google Scholar 

  8. Belbruno, E., Gott, J.R.: Where did the Moon come from? Astronom. J. 129, 1724–1745 (2005)

    Article  Google Scholar 

  9. Byalko, A.V.: Zodiac light: an old problem and new hypotheses. Priroda 6, 22–31 (2020)

    Google Scholar 

  10. Canap, R.M., Esposito, L.W.: Accretion of the Moon from an impact generated disk. Icarus 119, 427–446 (1996)

    Article  Google Scholar 

  11. Wang, J., Davis, A.M., Clayton, R.N., Hashimoto, A.: Evaporation of single crystal forsterite: evaporation kinetics, magnesium isotopic fractionation and implication of mass dependent isotopic fractionation of mass controlled reservoir. Geochim. Cosmochim. Acta 63, 953–966 (1999)

    Article  Google Scholar 

  12. Humayun, M., Clayton, R.N.: Precise determination of the isotopic composition of potassium: application to terrestrial rocks and lunar soils. Geochim. Cosmochim. Acta 59, 2115–2130 (1995)

    Article  Google Scholar 

  13. Humayun, M., Cassen, P.: Processes determining the volatile abundances of the meteorites and terrestrial planets. In: Canap, R.M., Righter, K. (eds.) Origin of the Earth and Moon. Univ. Arizona Press (2000)

    Google Scholar 

  14. Pahlevan, K., Stevenson, D.J.: Volatile loss following the Moon forming giant impact. Goldschmidt Conference Abstracts, A716 (2008)

    Google Scholar 

  15. Gurevich, L.E., Lebedinsky, A.I.: Planetary formation. Proc. Acad. Sci. USSR, ser. Phys. 14(6), 765–775 (1950)

    Google Scholar 

  16. Kozlov, N.N., Eneev, T.M.: Numerical modeling of the process of planet formation from a protoplanetary cloud. Preprint No. 134 of the Institute of Applied Mathematics, USSR Academy of Sciences, Moscow (1977)

    Google Scholar 

  17. Eneev, T.M.: A new accumulation model of planet formation and structure of outer regions of the solar system. Preprint No. 166. Institute of Applied Mathematics, USSR Academy of Sciences, Moscow (1979)

    Google Scholar 

  18. Ruskol, E.L.: Moon Genesis. Moscow, Ed. «Nauka» (1975)

    Google Scholar 

  19. Jarkov, V.N.: Interiors of the Earth and Planets. Moscow, Ed. «Nauka» (1983)

    Google Scholar 

  20. Kolesnichenko, A.V., Marov, M.Ya. : Fundamentals of mechanics of heterogeneous media in the circumsolar dopplanetary cloud: effect of solid particles on turbulence in the disk. Astron. Vestn. 40(1), 2–62 (2006)

    Google Scholar 

  21. Marov, M.Y., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N., Chernov, A.V.: From a protosolar cloud to a planetary system: a model of gas-dust disk evolution. In: Galimov, E.M. (ed.) Problems of the Origin and Evolution of the Biosphere, pp. 223–273. URSS Publishing House, Moscow (2008)

    Google Scholar 

  22. Adushkin, V.V., Vityazev, A.V., Pechernikova, G.V.: In development of the theory of origin and evolution of the earth. In: Galimov, E.M. (ed.) Problems of the Origin and Evolution of the Biosphere, pp. 275–296. URSS Publishing House, Moscow (2008)

    Google Scholar 

  23. Zabrodin, A.V., Zabrodina, E.A., Legkostupov, M.S., Manukovsky, K.V., Pliner, L.A.: Some models for the description of the protoplanetary disk of the Sun at the initial stage of its evolution. In: Galimov, E.M. (ed.) Problems of the Origin and Evolution of the Biosphere, pp. 297–315. URSS Publisher, Moscow (2008)

    Google Scholar 

  24. Galimov, E.M.: Current state of the problem of the origin of the Earth-Moon system. In: Galimov, E.M. (ed.) Problems of the Origin and Evolution of the Biosphere, pp. 213–222. Publishing house URSS, Moscow (2008)

    Google Scholar 

  25. Kazenas, E.K., Tsvetkov, Yu.V.: Thermodynamics of Oxide Evaporation. LKI Publishing House, Moscow (2008)

    Google Scholar 

  26. Jones, J.H., Drake, M.J.: Geochemical constraints on core formation in the Earth. Nature 322, 221–228 (1986)

    Article  Google Scholar 

  27. Righter, K., Pando, K.M., Danielson, L., Lee, Cin-Ty.: Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet. Sci. Lett. 291, 1–9 (2010)

    Google Scholar 

  28. Wood, B.J., Wade, J., Kilburn, M.R.: Core formation and the oxidation state of the Earth: addition constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008)

    Article  Google Scholar 

  29. Budde, G., Burkhardt, C., Kleine, T.: Molybdenum isotopic evidence for the late accretion of outer solar system material to Earth. Nat. Astronomy 3, 736–741 (2019)

    Google Scholar 

  30. Larimer, J.W.: The condensation and fractionation of refractory lithophile elements. Icarus 40, 446–454 (1979)

    Article  Google Scholar 

  31. Grossman, L., Larimer, J.W.: Early chemical history of the solar system. Rev. Geophys. Space Phys. 12, 71–101 (1974)

    Article  Google Scholar 

  32. Markova, O.M., Yakovlev, O.I., Semenov, G.L., Belov, A.N.: Some general results of experiments on evaporation of natural melts in the Knudsen chamber. Geochemistry 11, 1559–1569 (1986)

    Google Scholar 

  33. Hashimoto, A.: Evaporation metamorphism in the early solar nebula—evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractionations of primitive materials. Geochem. J. 17, 111–145 (1983)

    Article  Google Scholar 

  34. Taylor, S.R.: The origin of the Moon: a geochemical consideration. In: Hartmann, W.K., Phillips, R.J., Taylor, G.J. (eds.) Origin of the Moon, pp. 125–144. Lunar Planet. Inst. Houston (1986)

    Google Scholar 

  35. Ringwood, A.E.: Composition and origin of the Moon. In: Hartmann, W.K. et al. (eds.) Origin of the Moon, pp. 673–698. Lunar Planet. Inst., Houston (1986)

    Google Scholar 

  36. O’Neill, H.St.: The origin of the Moon and the early history of the Earth: a chemical model. Part 1: The Moon. Geochim. Cossmochim. Acta 55, 1135–1157 (1991)

    Google Scholar 

  37. Kuskov, O.L., Kronrod, V.A.: Gross composition and size of the Moon’s core. In: Galimov, E.M. (eds.) Problems of the Origin and Evolution of the Biosphere, pp. 317–327. URSS Publisher, Moscow (2008)

    Google Scholar 

  38. Newsom, H.E.: Constraints on the origin of the Moon from the abundance of molybdenum and other siderophile elements. In: Hartman, W.K., Phillips, R.J., Taylor, G.J. (eds.) Origin of the Moon, pp. 203–230. Lunar Planet. Inst. of the Moon, Huston (1986)

    Google Scholar 

  39. Elkins-Tanton, L.T., Burgess, S., Yin, Q.Z.: The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011)

    Article  Google Scholar 

  40. Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, N., Jacobsen, S., Yin, Q., Halliday, A.: Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  Google Scholar 

  41. Saal, A.E., et al.: Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008)

    Article  Google Scholar 

  42. Liu, Y., et al.: Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geosci. 5, 779–782 (2012)

    Article  Google Scholar 

  43. Hui, H., Peslier, A., Zhang, Y., Neal, C.R.: Water in lunar anorthosites and evidence for a wet early Moon. Nature Geosci. 6, 177–180 (2013)

    Article  Google Scholar 

  44. Akhmanova, M.V., Dementiev, B.V., Markov, M.N.: Water in the regolith of the Mare Crisium (Luna-24)? Geochemistry 2, 285–287 (1978). (in Russian)

    Google Scholar 

  45. Krivtsov, A.M., Krivtsova, N.V.: Method of particles and its use in mechanics of deformable solids. Far Eastern Math. J. 3(2), 254–276 (2002)

    Google Scholar 

  46. Le Zakharov, A.A., Krivtsov, A.M.: Development of algorithms for calculating the collision dynamics of gravitating particles to model the Earth-Moon system formation as a result of dust cloud gravitational collapse. In: Galimov, E.M. (ed.) Problems of the Origin and Evolution of the Biosphere, pp. 329–344 (2008)

    Google Scholar 

  47. Vasiliev, S.V., Krivtsov, A.M., Galimov, E.M.: Study of the planet-satellite system growth process as a result of the accumulation of dust cloud material. Sol. Syst. Res. 45(5), 410–419 (2011)

    Article  Google Scholar 

  48. Eggleton, P.P.: Approximations to the Radii of Roche Lobes. Astrophys. J. 268, 368–369 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to ac. Marov M. Y. and corresponding member of RAS Kolotov V. P. for pointing out the original measurements of water content in Vernadsky Institute RAS using samples of lunar regolith delivered by Luna-24 station. Graphic processing of the drawings was done by Fedulova Valeria. This work is conducted under the GEOKHI RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Voropaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voropaev, S.A. (2023). Moon’s Formation from Gas-Dust Cloud: New Geochemical and Astronomical Data. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_20

Download citation

Publish with us

Policies and ethics