Skip to main content

Abstract

Using databases of exoplanets, we conducted a comprehensive analysis of the known astronomical parameters and properties. We have constructed some relationships and correlations of the main planetary characteristics with classification by type of planets. We determined the average distance at which the astronomical snow line is formed in the exoplanet systems of red dwarfs. The stellar liquid water zone for exoplanetary systems near red dwarfs is calculated, taking into account the corotation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NASA Exoplanet Catalog. https://exoplanets.nasa.gov/. Accessed on 1 September 2021

  2. Marov, M.Y., Shevchenko, I.I.: Exoplanets. Exoplanetology. M. Izhevsk: Institute of Computer Research, p. 138 (2017)

    Google Scholar 

  3. Safronov, V.S.: Evolyutsiya doplanetnogo oblaka i obrazovanie Zemlya i planetov (Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets). Nauka, Moscow (1969)

    Google Scholar 

  4. Tutukov, A.V.: Stars and Planetary Systems, Astron. Zh., vol. 64, p. 1264 [Sov. Astron. (Eng. Transl.), 1987, vol. 31, p. 663] (1987)

    Google Scholar 

  5. Dressing, C.D., Newton, E.R., Schlieder, J.E., Charbonneau, D., Knutson, H.A., Vanderburg, A., Sinukoff, E.: Characterizing K2 candidate planetary systems orbiting low-mass stars. I. Classifying low-mass host stars observed during campaigns 1–7. Astrophys. J. 836(2) (2017)

    Google Scholar 

  6. Caballero, J.A.: The widest ultracool binary. Astron. Astrophys. 462(3), L61–L64 (2007)

    Article  Google Scholar 

  7. Burrows, A., Hubbard, W.B., Saumon, D., Lunine, J.I.: An expanded set of brown dwarf and very low mass star models. Astrophys. J. 406(1), 158–171 (1993)

    Article  Google Scholar 

  8. Adams, F.C., Laughlin, G.: A dying universe: the long term fate and evolution of astrophysical objects. Rev. Mod. Phys. 69, 337–372 (1997)

    Article  Google Scholar 

  9. Chabrier, G.: Galactic stellar and substellar initial mass function. Publ. Astronom. Soc. Pacific 115(809), 763–795 (2003)

    Google Scholar 

  10. Fischer, D.A., Valenti, J.: The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005)

    Article  Google Scholar 

  11. Neves, V., Bonfils, X., Santos, N.C., Delfosse, X., Forveille, T., Allard, F., Udry, S.: Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTO M dwarf sample. Astron. Astrophys. 551(A36), 1–17 (2013)

    Google Scholar 

  12. Mercer, A., Stamatellos, D.: Planet formation around M dwarfs via disc instability. Fragmentation conditions and protoplanet properties. Astron. Astrophys. 633(A116), 1–24 (2020)

    Google Scholar 

  13. Claudi, R., Alei, E., Battistuzzi, M., Cocola, L., Erculiani, M.S., Pozzer, A.C., Salasnich, B., Simionato, D., Squicciarini, V., Poletto, L., Rocca, N.L.: Super-earths, M dwarfs and photosynthetic organisms: habitability in the lab. Life 11(1), 10 (2021)

    Article  Google Scholar 

  14. Marov, M.Y.K.: Ot solnechnoi sistemy vglub’ Vselennoi (Space. From the Solar System deep into the Universe), Fizmatlit, Moscow, p. 536 (2016) (in Russian)

    Google Scholar 

  15. Martin, R.G., Livio, M.: On the evolution of the snow line in protoplanetary discs. Monthly Notices of the Royal Astronomical Society. Letters 425(1), L6–L9 (2012)

    Google Scholar 

  16. Cieza, L.A., Casassus, S., Tobin, J., Bos, S., Williams, J.P., Perez, S., Zhu, Z., Caceres, C., Canovas, H., Dunham, M.M., Hales, A., Prieto, J.L., Principe, D.A., Schreiber, M.R., Ruiz-Rodriguez, D., Zurlo, A.: Imaging the water snowline during a protostellar outburst. Nature 535, 258–261 (2016)

    Google Scholar 

  17. Wandel, A.: On the biohabitability of M-dwarf planets. Astrophys. J. 856(165) (2018)

    Google Scholar 

  18. Kulkarni, S.R., Rau, A.: The nature of the DLS fast transients. Astrophys. J. Lett. 644(2006), L63–L66 (2006). https://doi.org/10.1086/505423

    Article  Google Scholar 

  19. Kaltenegger, L., Eiroa, C., Fridlund, C.V.M.: Target star catalogue for Darwin Nearby Stellar sample for a search for terrestrial planets. Astrophys. Space Sci. 326(2), 233–247 (2010)

    Article  Google Scholar 

  20. Dole, S.H.: Habitable Planets for Man. American Elsevier, New York (1970)

    Google Scholar 

  21. Peale, S.J.: Rotation histories of the natural satellites. Planetary satellites. In: Burns, J.A. (ed.) Proceedings of IAU Colloq. 28, held in Ithaca, NY. University of Arizona Press, p. 87 (1977)

    Google Scholar 

  22. Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Habitable zones around main sequence stars. Icarus 101(1), 108–128 (1993)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to an A. V. Tutukov and also M. Ya. Marov, D. D. Badyukov, S. I. Ipatov for very helpful comments that have considerably improved the manuscript. Studies of liquid water existence area was carried out as a part of the state assignments of the V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS. Studies of astronomical databases were supported by Ministry of Science and Higher Education of the Russian Federation under the Grant 075-15-2020-780 (N13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Mironov .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 1.

Table 1 Parameters of studied exoplanets and their parent red dwarf stars

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mironov, D.D., Grishakina, E.A. (2023). The Snow Line in Red Dwarf Systems. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_16

Download citation

Publish with us

Policies and ethics