Skip to main content

Study of Hydrodynamic Processes in the Ocean by Remote Laser-Optical Methods

  • Chapter
  • First Online:
Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences

Abstract

The possibilities of studying hydrodynamic processes taking place in the sea medium thickness by changing the characteristics of the sea surface and the near-surface layers of the sea medium and the atmosphere using remote laser-optical methods are considered. Estimated relations for the measured characteristics are obtained. The description of the equipment and algorithms for the extraction of anomalies in the measured signals caused by perturbations of the hydrodynamic processes under study is given. The results of the performed full-scale and model laboratory investigations are discussed. The methods of identification of anomalies in satellite images of the sea surface are presented. The methods are tested on the example of registration of ship trace of sea surface. Approaches to the study of deep processes in the marine environment based on machine learning methods are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginzburg, A.I., Kostyanoy, A.G., Krivosheya, V.G., Nezlin, N.P., Solovyev, D.M., Stanichny, S.V., Yakubenko, V.G.: Features of water dynamics and chlorophyll a distribution in the north-east part of the Black Sea in autumn 1997. Oceanology 40(3), 344–356 (2000) (in Russian)

    Google Scholar 

  2. Rogachev, K.A., Shlyk, N.V.: Mechanism of formation of an anticyclonic vortex in Sakhalin Bay based on satellite observations. Earth Explor. Space 5, 12–20 (2013). (in Russian)

    Google Scholar 

  3. Wu, J., Heimbach, S.P., Hsu, Y.L.: Scanning device for the study of wind ripples on the sea surface. Instr. Sci. Res. 8, 120–126 (1981)

    Google Scholar 

  4. Buften, J.L., Hoge, F.E., Swift, R.N.: Airborn measurements of laser backscatter from the ocean surface. Appl. Opt. 22, 2603–2618 (1983)

    Article  Google Scholar 

  5. Shifrin, K.S.: Optics of the ocean and atmosphere. Nauka, Moscow (1981)

    Google Scholar 

  6. Lee M.E., Martynov O.V.: Some results of sea color index studies. Marine Hydrophys. Res. 1(72), 133–138 (1976) (in Russian)

    Google Scholar 

  7. Degtyarev, V.I., Konstantinov, O.G., Nelepa, A.A., Kostenko, I.P.: Differential sea surface spectral brightness coefficient meter. Marine Hydrophys. Res. 1(72), 124–132 (1976)

    Google Scholar 

  8. Hinckley, E.D.: Laser control of the atmosphere. Mir, Moscow (1979)

    Google Scholar 

  9. Mejeris, R.: Laser remote sensing. Mir, Moscow (1987)

    Google Scholar 

  10. Gorelov, A.M., Zevakin, E.A., Ivanov, S.G., Kaledin, S.B., Leonov, S.O., Nosov, V.N., Savin, A.S.: On a complex approach to remote registration of hydrodynamic disturbances of the marine environment by optical methods. Phys. Basis Instr. 1(4), 58–64 (2012) (in Russian)

    Google Scholar 

  11. Nosov, V.N., Kaledin, S.B., Ivanov, S.G., Glebova, T.V., Timonin, V.I.: On increase of efficiency of detection of anomalies excited by a sea underwater source at complex use of laser-optical methods of registration. Process. GeoMedia 1(5), 85–94 (2016) (in Russian)

    Google Scholar 

  12. Nosov, V.N., Kaledin, S.B., Ivanov, S.G., Timonin, V.I.: Remote tracking to monitor ship tracks at or near the water surface. Optics Spectros. 127, 669–674 (2019). https://doi.org/10.21883/OS.2019.10.48366.165-19

  13. Nosov, V.N., Ivanov, S.G., Kaledin, S.B., Petukhov, A.V., Savin, A.S.: Prospects of application of drones for laser sensing of sea surface. Phys. Basis Instr. 10(1), 70–81 (2021). https://doi.org/10.25210/jfop-2101-070081

    Article  Google Scholar 

  14. Belov, M.L., Gorodnichev, V.A., Kozintsev, V.I., Strelkov, B.V.: Laser signal power received by the locator from a random area of an uneven sea surface. Bulletin of the Bauman Moscow State Technical University. Ser. Instr. Eng. 3, 3–15 (2008) (in Russian)

    Google Scholar 

  15. Nosov, V.N., Ivanov, S.G., Timonin, V.I., Kaledin, S.B.: Anisotropy study of statistical characteristics of wind waves under the influence of hydrodynamic perturbations in laser-reflective method. In: Olegovna, C. (eds.) Processes in GeoMedia, vol. I, pp. 93–100. Springer Geology. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38177-6_11

  16. Dubovik, A.N.: On the role of curvature anisotropy in light reflection from specular points of sea surface. Izv. FAO. 32(1), 147–151 (1996) (in Russian)

    Google Scholar 

  17. Onemetto, N.: Analytical laser spectroscopy. Mir, Moscow (1982)

    Google Scholar 

  18. Artemyev, V.A., Burenkov, V.I., Voznyak, S.B., Grigoryev, A.V., Daretski, M., Demidov, A., Kopelevich, O.V., Frantsov, O.N., Khrapko, A.N.: Sub-satellite measurements of ocean color: a field experiment in the Black and Aegean Seas. Oceanology. 40(2), 192–198 (2000) (in Russian)

    Google Scholar 

  19. Esipov, I.B., Naugolnykh, K.A., Nosov, V.N., Pashin, S.Yu.: Measurement of probability distribution of sea surface curvature radiuses. Izv. FAO. 22(10), 1115–1117 (1986) (in Russian)

    Google Scholar 

  20. Nosov, V.N., Pashin, S.Yu.: Statistical characteristics of wind waves in the gravitational-capillary spectral region. Izv. FAO. 26(11), 1161–1169 (1990) (in Russian)

    Google Scholar 

  21. Nosov, V.N., Kaledin, S.B., Ivanov, S.G., Zevakin, E.A., Serebrinikov, L.V., Savin, A.S., Timonin, V.I. (2022) On possibility of applying aircraft scanning laser locator for solving problems of operational oceanology. In: Chaplina, T. (eds) Processes in GeoMedia, vol. V. pp 179–188. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-85851-3_20

  22. Goldin, Yu.A., Kagain, V.E., Kelbalikhanov, B.F., Locke, Y.F., Pelevin, V.N.: Location of an undulating sea surface by means of OKG from the helicopter board. In: Galaziy, G.I. (ed.) Optical methods of research of the oceans and inland waters, pp. 135–140. Nauka, Novosibirsk (1979) (in Russian)

    Google Scholar 

  23. Byalko, A.V., Locke, Y.F., Pelevin, V.I.: Study of heterogeneities of wind waves from a helicopter board. In: Ozmidov, R.V. (eds.) Study of variability of optical properties of the Baltic Sea, pp. 34–44. Tallinn (1983) (in Russian)

    Google Scholar 

  24. Bunkin, F.V., Voliak, K.N., Malyarovsky, A.I., et al.: Airborne measurements of sea waves by reflection of continuous laser beam. Dokl. Acad. Sci. USSR 281(6), 1441–1445 (1985) (in Russian)

    Google Scholar 

  25. Nosov, V.N., Ivanov, S.G., Timonin, V.I., Podgrebenkov, A.L., Plishkin, A.N., Kaledin, S.B., Glebova, T.V., Yadrentsev, A.N., Zakharov, V.K.: Joint space and sea experiment on integrated vessel trace registration using subsatellite measurements. Fund. Appl. Hydrophys. 8(4), 34–35 (2015) (in Russian)

    Google Scholar 

  26. Glebova, T.V., Ivanov, S.G., Kaledin, S.B., Nosov, V.N., Savin, A.S., Timonin, V.I.: Estimation of surface wave curvature radii from measured amplitudes of laser-glare signals in full-scale experiments. Phys. Bases Instr. 10(2), 76–82 (2021). https://doi.org/10.25210/jfop-2102-074080

    Article  Google Scholar 

  27. Shuleikin, V.V.: Sea physics. Nauka, Moscow (1968)

    Google Scholar 

  28. Davidan, I.N., Lopatukhin, L.I., Rozhkov, V.A.: Wind waves in the World Ocean. Gidrometeoizdat, Leningrad (1985)

    Google Scholar 

  29. Kelbalikhanov, B.F.: Hydrooptical studies in waters of the World Ocean. Komi Scientific Center of the Ural Branch of Academy of Sciences of USSR, Syktyvkar (1992)

    Google Scholar 

  30. Artemyev, V.A., Burenkov, V.I., Vortman, M.I., Grigoryev, A.V., Kopelevich, O.V., Khrapko, A.N.: Sub-satellite ocean color measurements: a new floating spectroradiometer and its metrology. Oceanology 40(1), 148–155 (2000) (in Russian)

    Google Scholar 

  31. Ivanov, S.G., Nosov, V.N., Pogonin, V.I., Zevakin, E.A., Savin, A.S., Gorelov, A.M., Leonov, S.O.: Application of brightness photometer to obtain information of hydrodynamic disturbances in marine environment. In: Actual directions of applied mathematics in energy. energy efficiency and information and communication technologies: Proceedings of international scientific conference, pp. 277–280. Bauman Moscow State Technical University, Moscow (2010)

    Google Scholar 

  32. Ivanov, S.G., Nosov, V.N., Kaledin, S.B., Plishkin, A.N., Pogonin, V.I., Leonov, S.O., Molchanova, T.V., Zevakin, E.A.: Study of small-scale variability of near-surface layers of the marine environment under the hydrodynamic disturbances using the sea brightness photometer. Bulletin of Bauman State Technical University. Ser. Natural Sci. 5(56), 53–65 (2014) (in Russian)

    Google Scholar 

  33. Matyushenko, V.A., Pelevin, V.N., Rostovtseva, V.V.: Measurement of the sea brightness coefficient by a three-channel spectrophotometer from board the RV. Optics Atmos. Ocean. 9(5), 664–669 (1996) (in Russian)

    Google Scholar 

  34. Bakhanov, V.V., Goryachkin, Yu.N., Korchagin, N.N., Repina, I.A.: Local manifestations of deep processes at the sea surface and in the atmospheric drive layer. Doklady RAN 414(1), 111−115 (2007) (in Russian)

    Google Scholar 

  35. Piskozub, J.: Study of spatial distribution of marine aerosol over sea coast with a multifrequency lidar system. Proc SPIE 2471, 387–389 (1995)

    Article  Google Scholar 

  36. Zielinski, A., Piskozub, J., Irczuk, M.: Lidar studies of marine aerosol in the coastal zone. Proc. SPIE 2471, 428–438 (1995)

    Article  Google Scholar 

  37. Nosov, V.N., Gorelov, A.M., Kaledin, S.B., Kuznetsov, V.A., Leonov, S.O., Savin, A.S.: Laser emission scattering over the sea surface in the presence of hydrodynamic disturbances in the water column. DAN USSR 433(1), 111–112 (2010) (in Russian)

    Google Scholar 

  38. Nosov, V.N., Kaledin, S.B., Gorelov, A.M., Leonov, S.O., Kuznetsov, V.A., Pogonin, V.I., Savin, A.S.: Features of light scattering in the driven atmospheric layer over regions of long-lived hydrodynamic disturbances of the marine environment. DAN USSR 442(4), 559–550 (2012) (in Russian)

    Google Scholar 

  39. Resch, F.J., Darrozes, J.S., Afeti, G.M.: Marin liquid production from bursting of air bubbles. J. Geophys. Res. 91(C1), 1019–1029 (1986)

    Article  Google Scholar 

  40. Leifer, I.: Secondary bubble production from breaking waves: the bubble burst mechanism. Geophys. Res. Letter. 27(24), 4077–4080 (2000)

    Article  Google Scholar 

  41. Krekov, G.M.: Optical properties of coastal smoke. Nauka, Novosibirsk (1988)

    Google Scholar 

  42. Hettmansperger, D.: Statistical inference based on ranks. Finance and Statistics, Moscow (1989)

    Google Scholar 

  43. Nosov, V.N., Ivanov, S.G., Pogonin, V.I., Timonin, V.I., Zavyalov, N.A., Zevakin, E.A., Savin, A.S.: Influence of hydrodynamic perturbations on dispersion characteristics of a near-water aerosol. In: Karev, V., Klimov, D., Pokazeev, K. (eds.) Physical and mathematical modelling of earth and environment processes. PMMEEP 2017. Springer Geology. Springer, Cham, pp. 282–288 (2018). https://doi.org/10.1007/978-3-319-77788-7_29

  44. Nosov, V.N., Ivanov, S.G., Zavyalov, N.A., Kaledin, S.B., Pogonin, V.I., Zevakin, E.A.: Study of the influence of the oncoming interaction of the flow and stream from a propeller on the parameters of the driven aerosol. Process. Geomedia. 1(23), 611–616 (2020) (in Russian)

    Google Scholar 

  45. Nosov, V.N., Ivanov, S.G., Pogonin, V.I., Kaledin, S.B., Zevakin, E.A., Zavyalov, N.A.: Investigation of influece of the screw propeller working towards the flow on parameters of near water aerosol. In: Chaplina, T. (ed.) Processes in GeoMedia, vol. V. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-85851-3_23

  46. Zhulanov, Yu.V., Petryanov, I.V.: Investigation of the mechanism of generation of marine aerosols. Reports of the Academy of Science of the USSR. Ser. Geophys. 253(4), 845–848 (1980) (in Russian)

    Google Scholar 

  47. Kashkin, V.B., Sukhinin, A.I.: Remote sensing of the Earth from space. Logos Publisher, Moscow, Digital image processing (2008)

    Google Scholar 

  48. Schowengerdt, R.: Remote sensing. Models and methods of image processing—technosphere, Moscow (2010)

    Google Scholar 

  49. Aivazyan, S.A., Buchshtaber, V.M., Enyukov, I.S., et al.: Applied statistics. Classification and Dimensionality Decreasing. Finance and Statistics, Moscow (1989)

    Google Scholar 

  50. Gonzalez, R.: Digital image processing: monograph, translated from English. Technosphere, Moscow (2006)

    Google Scholar 

  51. Ahmed, N.: Recent review on image clustering. Image Processing, IET 9(11), 1020–1032 (2015)

    Article  Google Scholar 

  52. Aggarwal, C.C., Reddy C.K.: Data clustering: algorithms and applications. CRC Press (2014)

    Google Scholar 

  53. Osowski S.: Neural networks for information processing: transl. from Polish. I.D. Rudinsky Finance and Statistics, Moscow (2017)

    Google Scholar 

  54. Graves, A., Schmidhuber, J.: Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. NIPS 2008, pp. 545–552, Vancouver, Canada (2008)

    Google Scholar 

  55. Bondur, V.G.: Modern approaches to processing large flows of hyperspectral and multispectral aerospace information. Earth Explor. Space 1, 3–17 (2014). (in Russian)

    Google Scholar 

  56. Nosov, V.N., Timonin, V.I., Klementiev, M.K., Budovskaya, L.M.: Method for detection of the vessel trace anomalies in the sea surface images based on analysis of color gradient correlations. In: Chaplina, T. (ed.) Processes in GeoMedia, vol. II, pp. 219–224. Springer Geology. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53521-6_25

  57. Timonin, V.I., Kurbatov, R.A., Nosov, V.N.: On one statistical method of anomaly detection on sea surface images. Process. GeoMedia 4, 363–370 (2016). (in Russian)

    Google Scholar 

  58. Timonin, V.I., Tyannikova, N.D., Nosov, V.N., Ivanov, S.G., Klimentiev, M.K.: Application of multidimensional correlation procedures for identification of trace structures on sea surface space images. Process. GeoMedia 4, 1221–1225 (2018). (in Russian)

    Google Scholar 

  59. Nesterov, S.S., Shamaev, A.S., Shamaev, S.I.: Methods, procedures and tools of aerospace computerized radiotomography of near-surface regions of the Earth. Scientific World, Moscow (1996)

    Google Scholar 

  60. Tikhonov, A.N., Arsenin, V.Ya.: Methods of solving incorrect problems. Nauka, Moscow (1979)

    Google Scholar 

  61. Savin, A.S.: Determination of parameters of hydrodynamic features in the flat flow by data on its free surface. Izvestiya RAN MZHG 2, 139–146 (2001). (in Russian)

    Google Scholar 

  62. Boyarintsev, V.I., Lednev, A.K., Prudnikov, A.S., Savin, A.S., Savina, E.O.: Modelling and experimental study of disturbances of free boundary of plane flow by submerged sources. Preprint IPM RAS 720, Moscow (2002) (in Russian)

    Google Scholar 

  63. Voronin, E.A., Nosov, V.N., Savin, A.S.: Neural network approach to solving the inverse problem of surface-waves generation. J. Phys. Phys. Conf. Ser. Conf. 1, 1392. 012022. IOP Publishing (2019). https://doi.org/10.1088/1742-6596/1392/1/012022

  64. Voronin, E.A., Nosov, V.N., Savin, A.S.: Determination of submerged source parameters by liquid surface disturbances based on machine learning methods. Dokl. RAS. Earth Sci. 493(1), 103–106 (2020) (in Russian)

    Google Scholar 

  65. Osowski, S.: Neural networks for information processing. Finance and Statistics, Moscow (2002)

    Google Scholar 

  66. Haikin, S.: Neural networks: full course, 2nd edn. Williams Publishing House, Moscow (2006)

    Google Scholar 

  67. Manning, C.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  68. Max, K., Kjell, J.: Applied Predictive Modeling. Springer (2013)

    Google Scholar 

  69. Nathan, M., James, W.: Big Data: Principles and Best Practices of Scalable Real-Time Data Systems: Manning Publications (2015)

    Google Scholar 

  70. Goodfellow, J., Bengio, I., Courville, A.: Deep Learning. DMK Press, Moscow (2017)

    Google Scholar 

  71. Flach, P.: Machine Learning. The science and art of building algorithms that extract knowledge from data. DMK Press, Moscow (2015)

    Google Scholar 

  72. Shalev-Schwartz, S., Ben-David, S.: Ideas of machine learning: from theory to algorithms. DMK Press, Moscow (2019)

    Google Scholar 

  73. Barmin, A.A., Boyarintsev, V.I., Lednev, A.K., Savin, A.S., Savina, E.O.: Modelling and experimental study of disturbances of free liquid surface by ball and ellipsoid. Preprint 763 Institute of Problems of Mechanics of RAS, Moscow (2004) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nosov, V.N. et al. (2023). Study of Hydrodynamic Processes in the Ocean by Remote Laser-Optical Methods. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_13

Download citation

Publish with us

Policies and ethics