Skip to main content

Possible Role of Positive Stratospheric Ozone Anomalies and Adaptation to Climate Change

  • Chapter
  • First Online:
Handbook of Human and Planetary Health

Abstract

It becomes more apparent that physical processes throughout the atmosphere, as vertically and horizontally, are correlated on different spatial and time scales. The total ozone has various concentrations over the whole Earth’s atmosphere. A sharp correlation between total ozone, stratosphere profile, and tropospheric circulation was observed. Last experiments have shown that positive stratospheric ozone anomalies can lead to more dangerous effects on weather-climate change. The study of specific anomalous phenomena in the regional climate experimentally and by the method of mathematical modelling demonstrates the severe influence of an increase in the concentration of stratospheric ozone, including Sudden Stratospheric Warming (S.S.W.), on the features of not only local weather changes but also on variations in the climate of the hemispheres in a global scale. Climate change adaptation is adapting native, social, or economic systems in response to actual or anticipated climate changes and their consequences. Adaptation to Sudden Stratospheric Warming is often impossible and therefore it is necessary to develop theoretical aspects of forecasting such phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageeva VY, Gruzdev AN, Elohov AS, Mohov II (2017) Sudden stratospheric warming: statistical characteristics and impact on total NO2 and O3. Izvestiya R.A.N. Fizika atmosfery i okeana. T 53(5):545–555 (in Russian)

    Google Scholar 

  • Appenzeller C, Davies HC (1992) Structure of stratospheric intrusions into the troposphere. Nature 358(6387):570–572

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584

    Article  CAS  Google Scholar 

  • Baldwin P, Ayarzagüena B, Birner T, Butchart N, Butler AH, Charlton-Perez AJ, Domeisen DIV, Garfinkel CI, Garny H, Gerber EP, Hegglin I, Langematz U, Pedatella N (2021) Sudden stratospheric warmings. Rev Geophys 58:e2020RG000708. https://doi.org/10.1029/2020RG000708

  • Barodka S, Krasouski A, Lapo P, Svetashev A, Shlender T, Yakautsava Y, Zhuchkevich V, Bruchkouski I (2016) Climatology, structure and formation mechanisms of local ozone anomalies in Europe/WCRP/SPARC workshop: “Challenges for Climate Science - Synergies between SPARC and the WCRP Grand Challenges”, Berlin, Germany, Oct 31–Nov 1, 2016

    Google Scholar 

  • Blume C, Matthes K, Horenko I (2012) Supervised learning approaches to classify sudden stratospheric warming events. J Atmos Sci 69:1824–1840

    Article  Google Scholar 

  • Brönnimann S, Luterbacher J, Staehelin J, Svendby T (2004) An extreme anomaly in stratospheric ozone over Europe in 1940–1942. Geophys Res Lett 31(8) L08101:1–5. https://doi.org/10.1029/2004GL019611

  • Calvo N, Polvani LM, Solomon S (2015) On the surface impact of Arctic stratospheric ozone extremes. Environ Res Lett 10(9). https://doi.org/10.1088/1748-9326/10/9/094003

  • Domeisen DIV, Butler AH (2020) Stratospheric drivers of extreme events at the Earth’s surface. Commun Earth Environ 1(59). https://doi.org/10.1038/s43247-020-00060-z

  • Hoinka KP, Claude H, Köhler U (1996) On the correlation between tropopause pressure and ozone above Central Europe. Geophys Res Lett 23:1753–1756. https://doi.org/10.1029/96GL01722

    Article  CAS  Google Scholar 

  • Hoskins BJ, Mcintyre ME, Robertson ALW (1985) On the use and significance of isentropic potential vorticity maps. Quart J R Meteor Soc 111:877–946

    Article  Google Scholar 

  • Hudson RD, Frolov AD, Andrade MF, Follette MB (2003) The total ozone field separated into meteorological regimes. Part I: defining the regimes. J Atmos Sci 60:1669–1677

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, Switzerland, 151 p

    Google Scholar 

  • IPCC (2018) Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte V, Zhai P, Pörtner H.-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds)]. 2019 Intergovernmental Panel on Climate Change

    Google Scholar 

  • Ivy DJ, Solomon S, Calvo N, Thompson D.W.J. (2017) Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ Res Lett 12(2). https://doi.org/10.1088/1748-9326/aa57a4

  • Karpechko AY, Charlton-Perez A, Balmaseda M, Tyrrell N, Vitart F (2018) Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys Res Lett 45(13):538–13, 546. https://doi.org/10.1029/2018GL08109

  • Kidston J, Scaife AA, Hardiman SC, Mitchell DM, Butchart N, Baldwin MP, Gray LJ (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat Geosci 8:433–440. https://doi.org/10.1038/ngeo2424

    Article  CAS  Google Scholar 

  • King AD, Butler AH, Jucker M, Earl NO, Rudeva I (2019) Observed relationships between sudden stratospheric warmings and European climate extremes. J Geophys Res Atmos 124(13):943–961. https://doi.org/10.1029/2019JD030480

    Article  Google Scholar 

  • Krasouski A, Zenchanka S (2018) Ozone layer depletion, climate change, risks and adaptation. In: Alves F, Leal Filho W, Azeiteiro U (eds) Theory and practice of climate adaptation. Climate change management. Springer, Cham. https://doi.org/10.1007/978-3-319-72874-2_8

  • Krasouski A, Zenchanka S, Zhuchkevich V, Schlender T, Sidsaph H (2020) Ozone layer holes, regional climate change and possible ways for their forecasting. In: Leal Filho W, Nagy G, Borga M, Pastor Chavez D, Magnuszewsk A, (eds) Climate change, hazards and adaptation options: handling the impacts of a changing climate. Springer International Publishing, Switzerland https://doi.org/10.1007/978-3-030-37425-9_17

  • Krasouski A, Zenchanka S, Schlender T (2021a) Droughts and wildlife fires formation due to stratosphere-troposphere interactions. In: Leal Filho W, Azeiteiro UM, Setti AFF (eds) Sustainability in natural resources management and land planning. World sustainability series. Springer, Cham. https://doi.org/10.1007/978-3-030-76624-5_24

  • Krasouski A, Schlender TV, Borodko SK, Zhuchkevich VV, Turyshev LN, Zenchenko SA (2021b) The legacy of A.L. Chizhevsky about solar-terrestrial connections. The role of the ozone mechanism. Materials of the international scientific and practical intramural conference “Development of geographical research in Belarus in the XX–XXI centuries”, Minsk, March 24–26, 2021b, pp 71–91

    Google Scholar 

  • Krasovski A, Turyshev LN, Svetashev AG, Zuchkevich VV, Borodko SK (2016) Ozonovyj mekhanizm upravleniya regional'nym klimatom i pogodoj [Ozone mechanism for regional climate and weather management]. Nauka i innovacii 9:17–20 (in Russian)

    Google Scholar 

  • Kunz A, Konopka P, Müller R, Pan LL (2011) Dynamical tropopause based on isentropic potential vorticity gradients. J Geophys Res 116(D01110):1–13. https://doi.org/10.1029/2010JD014343

    Article  Google Scholar 

  • Labitzke K (1972) Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J Atmos Sci 29:756–766. https://doi.org/10.1175/1520-0469(1972)029%3c0756:TCITMA%3e2.0.CO;2

    Article  Google Scholar 

  • Langford AO, Brioude J, Cooper OR, Senff J, Alvarez II RJ, Hardesty RM, Johnson BJ, and Oltmans SJ (2012) Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010. J Geophys Res 117:D00V06. https://doi.org/10.1029/2011JD016766

  • Limpasuvan V, Hartmann DL, Thompson D, Jeev K, Yung YL (2005) Stratosphere-troposphere evolution during polar vortex intensification. J Geophys Res Atmos 110. https://doi.org/10.1029/2005JD006302

  • Liu J, Rodriguez JM, Oman LD, Douglass AR, Olsen MA, Hu L (2020) Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere. Atmos Chem Phys 20:6417–6433. https://doi.org/10.5194/acp-20-6417-2020

    Article  CAS  Google Scholar 

  • Lunin VV, Popovich MP, Tkachenko SN, (1998) Physical chemistry of ozone. M.: MSU, pp 480 (in Russian)

    Google Scholar 

  • Manney G, Coy L (2014). Satellite observations of extreme events in the Polar Middle Atmosphere, SPARC General Assembly, Queenstown, New Zealand

    Google Scholar 

  • Maycock AC, Randel WJ, Steiner AK et al (2018) Revisiting the mystery of recent stratospheric temperature trends. Geophys Res Letts 45:9919–9933. https://doi.org/10.1029/2018GL078035

    Article  Google Scholar 

  • Mitra AP (1974) Ionospheric effects of solar flares. Norwell, MA

    Google Scholar 

  • Montreal Protocol (1987) European Commission, Luxembourg: Office for Official Publications of the European Communitie. Retrieved Dec 17 2021, from https://treaties.un.org/doc/Publication/UNTS/Volume%201522/volume-1522-I-26369-English.pdf

  • Ott LE et al (2016) Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVER-AQ (2011): new evidence from NASA’s GEOS-5 simulations. J Geophys Res Atmos 121:3687–3706. https://doi.org/10.1002/2015JD024052

    Article  Google Scholar 

  • Rakipova LR, Vishnyakova ON (1978) Impact of vertical motion on ozone concentration—Trydy G.G.O., iss. 407 (in Russian)

    Google Scholar 

  • Randel WJ, Smith AK, Wu F, Zou C, Qian H (2016) Stratospheric temperature trends over 1979–2015 derived from combined S.S.U., M.L.S. and SABER satellite observations. J Clim 29(13):4843–4859. https://doi.org/10.1175/JCLI-D-15-0629.1

  • Reed RJ (1955) A study of a characteristic type of upper-level frontogenesis. J Meteorol 12:542–552

    Article  Google Scholar 

  • Report (2014) of the Ninth meeting of the ozone research managers of the parties to the Vienna Convention for the protection of the ozone layer, Geneva, 14–16 May 2014, WMO Global Ozone Research and Monitoring Project Report No. 54

    Google Scholar 

  • Rind D, Lerner J, McLinden C, Perlwitz J (2009) Stratospheric ozone during the Last Glacial Maximum. Geophys Res Lett 36:L09712. https://doi.org/10.1029/2009GL037617

    Article  CAS  Google Scholar 

  • Schlender TV, Zhuchkevich VV, Krasovski AN (2018) Regional'noe vliyanie stratosfernyh processov v formirovanii pogody i klimata Respubliki Belarus' po dannym monitoring [Regional influence of stratospheric processes in the formation of weather and climate of the Republic of Belarus empoying to monitoring data]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Geografiya. Geologiya=J Belarusian State Univ Geogr Geol 2:25–38 (in Russian)

    Google Scholar 

  • Schlender TV, Zhuchkevich VV, Krasouski AN, Umreika SD (2020) Sudden Stratospheric Warming (S.S.W.) climatic contribution to winter temperature in Belarus: case of S.S.W. 2017/2018. I.O.P. conference series: earth and environmental science, Volume 606, 012053/Climate change: causes, risks, consequences, problems of adaptation and management 26-28 Nov 2019, Moscow, Russian Federation.https://doi.org/10.1088/1755-1315/606/1/012053

  • Schoeberl MR (1978) Stratospheric warmings: observations and theory. Rev Geophys Space Phys V 16(4):521–538

    Article  Google Scholar 

  • Shalamyanski AM (2013) Koncepciya vzaimodejstviya atmosfernogo ozona i vozdushnyh mass Severnogo polushariya [The concept of interaction of atmospheric ozone and air masses of the Northern Hemisphere]. Trudy G.G.O. im. A.I. Voejkova, 568:173–194 (in Russian)

    Google Scholar 

  • Shapiro MA, Keyser DA (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds) Extratropical cyclones: The Erik Palmen memorial volume, pp 167–191, Am Meteorol Soc, Boston, Mass

    Google Scholar 

  • Škerlak B, Sprenger M, Pfahl S, Tyrlis E, Wernli H (2015) Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events. J Geophys Res Atmos 120:4860–4877. https://doi.org/10.1002/2014JD022787

    Article  Google Scholar 

  • Sullivan JT, McGee TJ, Thompson AM, Pierce RB, Sumnicht GK, Twigg LW, Eloranta E, Hoff RM (2015) Characterising the lifetime and occurrence of stratospheric-tropospheric exchange events in the Rocky Mountain region using high resolution ozone measurements. J Geophys Res Atmos 120(24):12410–12424. https://doi.org/10.1002/2015JD023877

    Article  Google Scholar 

  • Tilmes S et al (2010) An aircraft-based upper troposphere lower stratosphere O3, CO, and H2O climatology for the Northern Hemisphere. J Geophys Res 115:D14303. https://doi.org/10.1029/2009JD012731

    Article  CAS  Google Scholar 

  • UNFCCC (n.d.) What do adaptation to climate change and climate resilience mean? Retrieved Dec 17 2021, from https://unfccc.int/topics/adaptation-and-resilience/the-big-picture/

  • Vargin PN, Kiryushov BM (2019) Major Sudden stratospheric warming in the Arctic in February 2018 and its impacts on the troposphere, mesosphere, and ozone layer. Russ Meteorol Hydrol 44:112–123. https://doi.org/10.3103/S1068373919020043

    Article  Google Scholar 

  • Vienna Convention (1985) The Vienna Convention for the protection of the ozone layer. Retrieved Dec 17, 2021 from http://www.unep.org/ozone/

  • Wang M, Fu Q, Solomon S, White RH, Alexander B (2020) Stratospheric ozone in the Last Glacial Maximum. J Geophys Res Atmos 125(21):e2020JD032929. https://doi.org/10.1029/2020JD032929

  • Waugh DW, Sobel AH, Polvani LM (2017) What is the polar vortex and how does it influence weather? Bull Am Meteorol Soc 98:37–44. https://doi.org/10.1175/BAMS-D-15-00212.1

    Article  Google Scholar 

  • WMO (1992) World Meteorological Organization, international meteorological vocabulary. WMO/OMM/BMO, no. 182

    Google Scholar 

  • WMO (2018) Scientific assessment of ozone depletion: 2018 global ozone research and monitoring project – Report No. 58, 588 pp, Geneva, Switzerland

    Google Scholar 

  • Xia Y, Huang Y, Hu Y (2018) On the climate impacts of upper tropospheric and lower stratospheric ozone. J Geophys Res Atmos 123(2):730–739. https://doi.org/10.1002/2017JD027398

    Article  CAS  Google Scholar 

  • Zhang J, Xie F, Tian W et al (2017) Influence of the Arctic oscillation on the vertical distribution of wintertime ozone in the stratosphere and upper troposphere over Northern Hemisphere. J Clim 30(8):2905–2919. https://doi.org/10.1175/JCLI-D-16-0651.1

    Article  Google Scholar 

  • Zhang J, Tian W, Xie F et al (2018) Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat Commun 9:206. https://doi.org/10.1038/s41467-017-02565-2

    Article  CAS  Google Scholar 

  • Zvyagintsev AM (2013) Spatio-temporal variability of ozone in the troposphere. Diss. doct. f.-m. sciences. Lomonosov Moscow State University, Dolgoprudny, p 238

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the submission of data for this study to Giovanni’s online portal for the provision of MERRA-2 Reanalysis data, AIRS, and OMI/TOMS satellite observations, and the ECMWF reanalysis and Belhydrometeocenter, data submission team. We also want to thank the QGIS team and Anton Gladkevich for their help in writing the algorithm in Python.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siarhei Zenchanka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasouski, A., Zenchanka, S., Schlender, T., Zhuchkevich, V., Barodka, S., Sidsaph, H. (2022). Possible Role of Positive Stratospheric Ozone Anomalies and Adaptation to Climate Change. In: Leal Filho, W. (eds) Handbook of Human and Planetary Health. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-09879-6_8

Download citation

Publish with us

Policies and ethics