Skip to main content

A Comprehensive Review of the Firefly Algorithms for Data Clustering

  • Chapter
  • First Online:
Advances in Swarm Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1054))

Abstract

Separating a given data set into groups (clusters) based on their natural similar characteristics is one of the main concerns in data clustering. A cluster can be defined as a collection of objects which are “homogeneous” between them and are “heterogeneous” to the objects belonging to other clusters. Many areas encounter clustering based applications including the fields of medical, image processing, engineering, economics, social sciences, biology, machine learning and data mining. Clustering goes under unsupervised learning where no labels are given to the learning algorithm, leaving it on its own to find structure in its input. Even though many classical clustering algorithms can be found, most of such suffer from severe drawbacks such as sensitivity over initial cluster centroids and hence can be easily trapped in local optimum solutions. The other main problem with the data clustering algorithms is that it cannot be standardized. On the other hand, clustering can be considered under optimizations which goes to the category of NP hard optimization making more difficult in solving. Addressing such NP hard problems, meta-heuristics play a remarkable role in optimization. Since its appearance from more than a decade ago, Firefly Algorithm (FA), a stochastic meta- heuristic in nature inspired algorithms has shown significant performance in giving solutions to many optimization problems. Hence FA has been used in research addressing the problem of clustering optimization. This chapter forestalls the ability of firefly algorithm in solving data clustering problem. It presents an introduction to clustering and the performance of FA, briefly reviews and summarizes some of the recent firefly-based algorithms used for data clustering with the emphasis on how FA has been combined/ hybridized with other methods to contribute to the problem of data clustering. Further it discusses on different representations, initializations, and the used cluster validation criteria in FA based clustering methods. The chapter also discusses why FA is to be more useful for clustering over other methods and what features made it more suitable for handling the clustering problem compared with other meta-heuristics. Finally, it focuses on the limitations that have been found in the literature on clustering grounded on FA-based applications and discusses possible avenues in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge university press, Cambridge (2004)

    Google Scholar 

  2. Yang, X.S.: Nature-inspired optimization algorithms: challenges and open problems. J. Comput. Sci. 46, 101104 (2020)

    Google Scholar 

  3. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press (1992)

    Google Scholar 

  4. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Google Scholar 

  5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  6. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)

    Google Scholar 

  7. Yang, X.S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178. Springer, Berlin (2009)

    Google Scholar 

  8. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  9. Brabazon, A., O’Neill, M., McGarraghy, S.: Natural Computing Algorithms, vol. 554. Springer, Berlin (2015)

    Google Scholar 

  10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Google Scholar 

  11. Brucker, P.: On the complexity of clustering problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research, pp. 45–54. Springer, Berlin (1978)

    Google Scholar 

  12. Welch, W.J.: Algorithmic complexity: three np-hard problems in computational statistics. J. Stat. Comput. Simul. 15(1), 17–25 (1982)

    Google Scholar 

  13. Al-Sultan, K.S.: A tabu search approach to the clustering problem. Pattern Recognit. 28(9), 1443–1451 (1995)

    Google Scholar 

  14. Selim, S.Z., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern Recognit. 24(10), 1003–1008 (1991)

    Google Scholar 

  15. Akay, Ö, Tekeli, E., Yüksel, G.: Genetic algorithm with new fitness function for clustering. Iran. J. Sci. Technol., Trans. A: Sci. 44, 865–874 (2020)

    Google Scholar 

  16. Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Comput. Stat. Data Anal. 50(5), 1220–1247 (2006)

    Google Scholar 

  17. Al Radhwani, A.M.N., Algamal, Z.Y.: Improving k-means clustering based on firefly algorithm. J. Phys.: Conf. Ser. 1897, 012004 (2021). IOP Publishing

    Google Scholar 

  18. Jadhav, A.N., Gomathi, N.: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex. Eng. J. 57(3), 1569–1584 (2018)

    Google Scholar 

  19. Behravan, I., Zahiri, S.H., Razavi, S.M., Trasarti, R.: Finding roles of players in football using automatic particle swarm optimization-clustering algorithm. Big Data 7(1), 35–56 (2019)

    Google Scholar 

  20. Srivatsava, P.R., Mallikarjun, B., Yang, X.S.: Optimal test sequence generation using firefly algorithm. Swarm Evol. Comput. 8, 44–53 (2013)

    Google Scholar 

  21. Imanirad, R., Yang, X.S., Yeomans, J.S.: Modelling-to-generate-alternatives via the firefly algorithm. J. Appl. Oper. Res. 5(1), 14–21 (2013)

    Google Scholar 

  22. Udaiyakumar, K., Chandrasekaran, M.: Application of firefly algorithm in job shop scheduling problem for minimization of makespan. Procedia Eng. 97, 1798–1807 (2014)

    Google Scholar 

  23. Kavousi-Fard, A., Samet, H., Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Exp. Syst. Appl. 41(13), 6047–6056 (2014)

    Google Scholar 

  24. Ariyaratne, M., Fernando, T., Weerakoon, S.: Solving systems of nonlinear equations using a modified firefly algorithm (modfa). Swarm Evol. Comput. 48, 72–92 (2019)

    Google Scholar 

  25. Yelghi, A., Köse, C.: A modified firefly algorithm for global minimum optimization. Appl. Soft Comput. 62, 29–44 (2018)

    Google Scholar 

  26. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)

    Google Scholar 

  27. Hassanzadeh, T., Meybodi, M.R.: A new hybrid approach for data clustering using firefly algorithm and k-means. In: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), pp. 007–011. IEEE (2012)

    Google Scholar 

  28. Mizuno, K., Takamatsu, S., Shimoyama, T., Nishihara, S.: Fireflies can find groups for data clustering. In: 2016 IEEE International Conference on Industrial Technology (ICIT), pp. 746–751. IEEE (2016)

    Google Scholar 

  29. Zhou, L., Li, L.: Improvement of the firefly-based k-means clustering algorithm. In: Proceedings of the 2018 International Conference on Data Science, pp. 157–162 (2018)

    Google Scholar 

  30. Xie, H., Zhang, L., Lim, C.P., Yu, Y., Liu, C., Liu, H., et al.: Improving k-means clustering with enhanced firefly algorithms. Appl. Soft Comput. 84, 105763 (2019)

    Google Scholar 

  31. Kaushik, K., Arora, V., et al.: A hybrid data clustering using firefly algorithm based improved genetic algorithm. Procedia Comput. Sci. 58, 249–256 (2015)

    Google Scholar 

  32. Sadeghzadeh M.: Data clustering using improved fire fly algorithm. In: Information Technology: New Generations, pp. 801–809. Springer, Berlin (2016)

    Google Scholar 

  33. Agbaje, M.B., Ezugwu, A.E., Els, R.: Automatic data clustering using hybrid firefly particle swarm optimization algorithm. IEEE Access 7, 184963–184984 (2019)

    Google Scholar 

  34. Nayak, J., Nanda, M., Nayak, K., Naik, B., Behera, H.S.: An improved firefly fuzzy c-means (fafcm) algorithm for clustering real world data sets. In: Advanced Computing, Networking and Informatics, Vol. 1, pp. 339–348. Springer, Berlin (2014)

    Google Scholar 

  35. Zhao, J., Tang, J., Shi, A., Fan, T., Xu, L.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspired Comput. 15(1), 24–42 (2020)

    Google Scholar 

  36. Manshahia, M.S., Dave, M., Singh, S.: Firefly algorithm based clustering technique for wireless sensor networks. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1273–1276. IEEE (2016)

    Google Scholar 

  37. Sarma, N., Gopi, M.: Implementation of energy efficient clustering using firefly algorithm in wireless sensor networks. Int. Proc. Comput. Sci. Inf. Technol. 59, 1 (2014)

    Google Scholar 

  38. Baskaran, M., Sadagopan, C.: Synchronous firefly algorithm for cluster head selection in WSN. Sci. World J. (2015)

    Google Scholar 

  39. Pitchaimanickam, B., Murugaboopathi, G.: A hybrid firefly algorithm with particle swarm optimization for energy efficient optimal cluster head selection in wireless sensor networks. Neural Comput. Appl. 32(12), 7709–7723 (2020)

    Google Scholar 

  40. Mosavvar, I., Ghaffari, A.: Data aggregation in wireless sensor networks using firefly algorithm. Wirel. Pers. Commun. 104(1), 307–324 (2019)

    Google Scholar 

  41. Sharma, A., Sehgal, S.: Image segmentation using firefly algorithm. In: 2016 International Conference on Information Technology (InCITe)-The Next Generation IT Summit on the Theme-Internet of Things: Connect your Worlds, pp. 99–102. IEEE (2016)

    Google Scholar 

  42. Alsmadi, M.K.: A hybrid firefly algorithm with fuzzy-c mean algorithm for mri brain segmentation. Am. J. Appl. Sci. 11(9), 1676–1691 (2014)

    Google Scholar 

  43. Alomoush, W., Sheikh Abdullah, S., Sahran, S., Hussain, R.: Segmentation of mri brain images using fcm improved by firefly algorithms. J. Appl. Sci. 14, 66–71 (2014)

    Google Scholar 

  44. Ghosh, P., Mali, K., Das, S.K.: Chaotic firefly algorithm-based fuzzy c-means algorithm for segmentation of brain tissues in magnetic resonance images. J. Vis. Commun. Image Represent. 54, 63–79 (2018)

    Google Scholar 

  45. Kuo, R., Li, P.: Taiwanese export trade forecasting using firefly algorithm based k-means algorithm and svr with wavelet transform. Comput. Indus. Eng. 99, 153–161 (2016)

    Google Scholar 

  46. Banati, H., Bajaj, M.: Performance analysis of firefly algorithm for data clustering. Int. J. Swarm Intell. 1(1), 19–35 (2013)

    Google Scholar 

  47. Langari, R.K., Sardar, S., Mousavi, S.A.A., Radfar, R.: Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks. Exp. Syst. Appl. 141, 112968 (2020)

    Google Scholar 

  48. Lei, X., Wang, F., Wu, F.X., Zhang, A., Pedrycz, W.: Protein complex identification through markov clustering with firefly algorithm on dynamic protein-protein interaction networks. Inf. Sci. 329, 303–316 (2016)

    Google Scholar 

  49. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, p. 10. IEEE (2000)

    Google Scholar 

  50. Lou, C., Gao, X., Wu, F., Chen, G.: Energy-aware clustering and routing scheme in wireless sensor network. In: International Conference on Wireless Algorithms, Systems, and Applications, pp. 386–395. Springer, Berlin (2015)

    Google Scholar 

  51. Abirami, T., Anandamurugan, S.: Data aggregation in wireless sensor network using shuffled frog algorithm. Wirel. Pers. Commun. 90(2), 537–549 (2016)

    Google Scholar 

  52. Dua D., Graff C.: UCI Machine Learning Repository (2017)

    Google Scholar 

  53. Labati, R.D., Piuri, V., Scotti, F.: All-idb: The acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing, pp. 2045–2048. IEEE (2011)

    Google Scholar 

  54. Blake C.: Uci Repository of Machine Learning Databases (1998). https://www.icsuciedu/mlearn/MLRepository.html

  55. Łukasik, S., Zak, S.: Firefly algorithm for continuous constrained optimization tasks. In: International Conference on Computational Collective Intelligence, pp. 97–106. Springer, Berlin (2009)

    Google Scholar 

  56. Hoos, H.H., Stützle T.: Stochastic Local Search: Foundations and Applications. Elsevier (2004)

    Google Scholar 

  57. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Google Scholar 

  58. Aeberhard, S., Coomans, D., De Vel, O.: Comparative analysis of statistical pattern recognition methods in high dimensional settings. Pattern Recognit. 27(8), 1065–1077 (1994)

    Google Scholar 

  59. Coomans, D., Jonckheer, M., Massart, D.L., Broeckaert, I., Blockx, P.: The application of linear discriminant analysis in the diagnosis of thyroid diseases. Anal. Chim. Acta 103(4), 409–415 (1978)

    Google Scholar 

  60. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: International Society for Optics and Photonics Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861–870 (1993)

    Google Scholar 

  61. Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004)

    Google Scholar 

  62. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Google Scholar 

  63. Zhang, X., Li, J., Yu, H.: Local density adaptive similarity measurement for spectral clustering. Pattern Recognit. Lett. 32(2), 352–358 (2011)

    Google Scholar 

  64. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum 38(1), 218–237 (2007)

    Google Scholar 

  65. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit. 35(6), 1197–1208 (2002)

    Google Scholar 

  66. Omran, M., Salman, A., Engelbrecht, A.: Dynamic clustering using particle swarm optimization with application in unsupervised image classification. In: Fifth World Enformatika Conference (ICCI 2005), pp. 199–204. Prague, Czech Republic (2005)

    Google Scholar 

  67. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Google Scholar 

  68. Hathaway, R.J., Bezdek, J.C.: Optimization of clustering criteria by reformulation. IEEE Trans. Fuzzy Syst. 3(2), 241–245 (1995)

    Google Scholar 

  69. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

    Google Scholar 

  70. Wang, Y., Chen, L., Mei, J.P.: Stochastic gradient descent based fuzzy clustering for large data. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 2511–2518. IEEE (2014)

    Google Scholar 

  71. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Google Scholar 

  72. Sun, X., Sun, L., Wang, H.: Extended k-anonymity models against sensitive attribute disclosure. Comput. Commun. 34(4), 526–535 (2011)

    Google Scholar 

  73. Honda, K., Kawano, A., Notsu, A., Ichihashi, H.: A fuzzy variant of k-member clustering for collaborative filtering with data anonymization. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–6. IEEE (2012)

    Google Scholar 

  74. Rahimi, M., Bateni, M., Mohammadinejad, H.: Extended k-anonymity model for privacy preserving on micro data. Int. J. Comput. Netw. Inf. Secur. 7(12), 42–51 (2015)

    Google Scholar 

  75. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Google Scholar 

  76. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–73 (1996)

    Google Scholar 

  77. Aljarah, I., Habib, M., Nujoom, R., Faris, H., Mirjalili, S.: A comprehensive review of evaluation and fitness measures for evolutionary data clustering. Algorithms Appl. Evol. Data Clust. 23 (2021)

    Google Scholar 

  78. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Google Scholar 

  79. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2(1), 193–218 (1985)

    Google Scholar 

  80. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    Google Scholar 

  81. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)

    Google Scholar 

  82. Jaccard, P.: Distribution comparée de la flore alpine dans quelques régions des alpes occidentales et orientales. Bulletin de la Murithienne 31, 81–92 (1902)

    Google Scholar 

  83. Chinchor, N., Sundheim, B.M.: Muc-5 evaluation metrics. In: Fifth Message Understanding Conference (MUC-5): Proceedings of a Conference Held in Baltimore. Maryland (1993)

    Google Scholar 

  84. Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure for clusters with different densities. In: IASTED International Conference on Intelligent Systems and Control, pp. 276–281 (2003)

    Google Scholar 

  85. Yang, X.S., He, X.S.: Why the firefly algorithm works? Stud. Comput. Intell. 245–259 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MKA Ariyaratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ariyaratne, M., Fernando, T. (2023). A Comprehensive Review of the Firefly Algorithms for Data Clustering. In: Biswas, A., Kalayci, C.B., Mirjalili, S. (eds) Advances in Swarm Intelligence. Studies in Computational Intelligence, vol 1054. Springer, Cham. https://doi.org/10.1007/978-3-031-09835-2_12

Download citation

Publish with us

Policies and ethics