Skip to main content

Myocardial Suppression Protocols

  • Chapter
  • First Online:
FDG-PET/CT and PET/MR in Cardiovascular Diseases

Abstract

18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) imaging has become a clinical mainstay in the diagnosis and treatment of inflammatory cardiovascular diseases. In order to optimize the utility of this imaging technique, careful patient preparation is required to suppress normal myocardial glucose metabolism and, accordingly, 18F-FDG uptake in order to effectively distinguish background myocardium from pathologic inflammation. At present, preparation protocols are highly variable and are defined by individual institutions. Techniques that are often employed in combination include dietary (e.g., fasting, high-fat low-carbohydrate diet) and behavioral strategies (e.g., abstaining from exercise) as well as pharmacologic interventions (e.g., heparin). This chapter will review the metabolism of normal myocardium and inflammatory cells, the different patient preparation strategies and available evidence supporting their implementation, challenging patient populations, current consensus recommendations, and future directions to provide further optimization of this imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

JSNC:

Japanese Society of Nuclear Cardiology

PET:

Positron Emission Tomography

SNMMI/ASNC:

Society of Nuclear Medicine and Molecular Imaging/American Society of Nuclear Cardiology

References

  1. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation. 1999;99(4):578–88.

    Article  CAS  Google Scholar 

  2. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001;42(10):1551–5.

    CAS  PubMed  Google Scholar 

  3. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24(1):86–99.

    Article  Google Scholar 

  4. Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4(1):1.

    Article  Google Scholar 

  5. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of (18) F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24(5):1741–58.

    Article  Google Scholar 

  6. Taegtmeyer H. Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med. 2010;51(Suppl 1):80S–7S.

    Article  CAS  Google Scholar 

  7. Christopoulos G, Jouni H, Acharya GA, Blauwet LA, Kapa S, Bois J, et al. Suppressing physiologic 18-fluorodeoxyglucose uptake in patients undergoing positron emission tomography for cardiac sarcoidosis: the effect of a structured patient preparation protocol. J Nucl Cardiol. 2019;28(2):661–71.

    Article  Google Scholar 

  8. Kumita S, Yoshinaga K, Miyagawa M, Momose M, Kiso K, Kasai T, et al. Recommendations for (18) F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis-2018 update: Japanese Society of Nuclear Cardiology recommendations. J Nucl Cardiol. 2019;26(4):1414–33.

    Article  Google Scholar 

  9. Larson SR, Pieper JA, Hulten EA, Ficaro EP, Corbett JR, Murthy VL, et al. Characterization of a highly effective preparation for suppression of myocardial glucose utilization. J Nucl Cardiol. 2019;27(3):849–61.

    Article  Google Scholar 

  10. Asmal AC, Leary WP, Thandroyen F, Botha J, Wattrus S. A dose-response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol. 1979;7(5):531–3.

    Article  CAS  Google Scholar 

  11. Demeure F, Hanin FX, Bol A, Vincent MF, Pouleur AC, Gerber B, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: implications for vulnerable coronary plaque imaging. J Nucl Med. 2014;55(10):1629–35.

    Article  CAS  Google Scholar 

  12. Alvi RM, Young BD, Shahab Z, Pan H, Winkler J, Herzog E, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging. 2019;12(7 Pt 1):1284–7.

    Article  Google Scholar 

  13. Osborne MT, Divakaran S. Seeking clarity: insights from a highly effective preparation protocol for suppressing myocardial glucose uptake for PET imaging of cardiac inflammation. J Nucl Cardiol. 2020;27(3):862–4.

    Article  Google Scholar 

  14. Schelbert HR, Henze E, Phelps ME, Kuhl DE. Assessment of regional myocardial ischemia by positron-emission computed tomography. Am Heart J. 1982;103(4):588–97.

    Article  CAS  Google Scholar 

  15. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40(2):271–7.

    Article  CAS  Google Scholar 

  16. Gormsen LC, Svart M, Thomsen HH, Sondergaard E, Vendelbo MH, Christensen N, et al. Ketone body infusion with 3-Hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017;6(3):e005066.

    Article  Google Scholar 

  17. Martineau P, Pelletier-Galarneau M, Juneau D, Leung E, Nery PB, de Kemp R, et al. Imaging cardiac sarcoidosis with FLT-PET compared with FDG/perfusion-PET: a prospective pilot study. JACC Cardiovasc Imaging. 2019;12(11 Pt 1):2280–1.

    Article  Google Scholar 

  18. Bravo PE, Bajaj N, Padera RF, Morgan V, Hainer J, Bibbo CF, et al. Feasibility of somatostatin receptor-targeted imaging for detection of myocardial inflammation: a pilot study. J Nucl Cardiol. 2019;28(3):1089–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Osborne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osborne, M.T., Mezue, K., Divakaran, S. (2022). Myocardial Suppression Protocols. In: Pelletier-Galarneau, M., Martineau, P. (eds) FDG-PET/CT and PET/MR in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-09807-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09807-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09806-2

  • Online ISBN: 978-3-031-09807-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics