Skip to main content

Viability Imaging

  • Chapter
  • First Online:
FDG-PET/CT and PET/MR in Cardiovascular Diseases

Abstract

While medical advances continue to improve the survival of those with a diagnosis of HF, it unfortunately remains a disease with an extremely poor prognosis. Thus, given the impact that ischemic HF places on patients and the health-care system, management strategies aimed at improving outcomes have been a prominent focus of research for many years. Specifically, the role that revascularization can play to improve patient outcomes has been widely investigated. In this regard, research on the utility of viability imaging to indicate which patients may benefit most from revascularization has demonstrated great potential in some studies, but not in others. As such, data is not uniformly consistent toward definitive conclusions on the role of viability detection. This chapter will discuss the concept of myocardial viability, the multimodality imaging tools available to assess viable myocardium, the new advances through research in this field, the clinical applications of viability assessment, and future directions in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.

    Google Scholar 

  2. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–402.

    Article  PubMed  Google Scholar 

  3. Kandolin RM, Wiefels CC, Mesquita CT, Chong AY, Boland P, Glineur D, et al. The current role of viability imaging to guide revascularization and therapy decisions in patients with heart failure and reduced left ventricular function. Can J Cardiol. 2019;35(8):1015–29.

    Article  PubMed  Google Scholar 

  4. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32(7):375–410.

    Article  PubMed  Google Scholar 

  5. Lim SP, Mc Ardle BA, Beanlands RS, Hessian RC. Myocardial viability: it is still alive. Semin Nucl Med. 2014;44(5):358–74.

    Article  PubMed  Google Scholar 

  6. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66(6):1146–9.

    Article  CAS  PubMed  Google Scholar 

  7. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–12.

    Article  PubMed  Google Scholar 

  8. D'Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2(9):1060–8.

    Article  PubMed  Google Scholar 

  9. Canty JM Jr, Fallavollita JA. Hibernating myocardium. J Nucl Cardiol. 2005;12(1):104–19.

    Article  PubMed  Google Scholar 

  10. Camici PG, Dutka DP. Repetitive stunning, hibernation, and heart failure: contribution of PET to establishing a link. Am J Physiol Heart Circ Physiol. 2001;280(3):H929–36.

    Article  CAS  PubMed  Google Scholar 

  11. Mc Ardle B, Shukla T, Nichol G, deKemp RA, Bernick J, Guo A, et al. Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. 2016;9(9):e004331.

    Article  PubMed  Google Scholar 

  12. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC, Cerqueira MD, et al. Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging. 2013;6(3):363–72.

    Article  PubMed  Google Scholar 

  13. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51(4):567–74.

    Article  PubMed  Google Scholar 

  14. Mc Ardle BA, Beanlands RS. Myocardial viability: whom, what, why, which, and how? Can J Cardiol. 2013;29(3):399–402.

    Article  PubMed  Google Scholar 

  15. Nihoyannopoulos P, Vanoverschelde JL. Myocardial ischaemia and viability: the pivotal role of echocardiography. Eur Heart J. 2011;32(7):810–9.

    Article  PubMed  Google Scholar 

  16. Erthal F, Wiefels C, Promislow S, Kandolin R, Stadnick E, Mielniczuk L, et al. Myocardial viability: from PARR-2 to IMAGE HF–current evidence and future directions. Int J Cardiovasc Sci. 2019;32(1):70–83.

    Google Scholar 

  17. Kaul S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation. 2008;118(3):291–308.

    Article  PubMed  Google Scholar 

  18. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117(1):103–14.

    Article  PubMed  Google Scholar 

  19. Velazquez EJ, Bonow RO. Revascularization in severe left ventricular dysfunction. J Am Coll Cardiol. 2015;65(6):615–24.

    Article  PubMed  Google Scholar 

  20. Bax JJ, Delgado V. Chronic total occlusion without collateral blood flow does not exclude myocardial viability and subsequent recovery after revascularization. J Nucl Cardiol. 2019;26(5):1731–3.

    Article  PubMed  Google Scholar 

  21. Wang L, Lu MJ, Feng L, Wang J, Fang W, He ZX, et al. Relationship of myocardial hibernation, scar, and angiographic collateral flow in ischemic cardiomyopathy with coronary chronic total occlusion. J Nucl Cardiol. 2019;26(5):1720–30.

    Article  PubMed  Google Scholar 

  22. Geleijnse ML, Fioretti PM, Roelandt JR. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol. 1997;30(3):595–606.

    Article  CAS  PubMed  Google Scholar 

  23. Underwood SR. Imaging techniques in the assessment of myocardial hibernation. Eur J Nucl Med Mol Imaging. 2004;31(8):1209; author reply 10-1.

    Article  PubMed  Google Scholar 

  24. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    Article  PubMed  Google Scholar 

  25. Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation. 1981;64(3):610–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bisi G, Sciagra R, Santoro GM, Fazzini PF. Rest technetium-99m sestamibi tomography in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J Am Coll Cardiol. 1994;24(5):1282–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bisi G, Sciagra R, Santoro GM, Rossi V, Fazzini PF. Technetium-99m-sestamibi imaging with nitrate infusion to detect viable hibernating myocardium and predict postrevascularization recovery. J Nucl Med. 1995;36(11):1994–2000.

    CAS  PubMed  Google Scholar 

  28. Sciagra R, Bisi G, Santoro GM, Zerauschek F, Sestini S, Pedenovi P, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997;30(2):384–91.

    Article  CAS  PubMed  Google Scholar 

  29. Schneider CA, Voth E, Gawlich S, Baer FM, Horst M, Schicha H, et al. Significance of rest technetium-99m sestamibi imaging for the prediction of improvement of left ventricular dysfunction after Q wave myocardial infarction: importance of infarct location adjusted thresholds. J Am Coll Cardiol. 1998;32(3):648–54.

    Article  CAS  PubMed  Google Scholar 

  30. Maurea S, Cuocolo A, Soricelli A, Castelli L, Nappi A, Squame F, et al. Enhanced detection of viable myocardium by technetium-99m-MIBI imaging after nitrate administration in chronic coronary artery disease. J Nucl Med. 1995;36(11):1945–52.

    CAS  PubMed  Google Scholar 

  31. Galli M, Marcassa C, Imparato A, Campini R, Orrego PS, Giannuzzi P. Effects of nitroglycerin by technetium-99m sestamibi tomoscintigraphy on resting regional myocardial hypoperfusion in stable patients with healed myocardial infarction. Am J Cardiol. 1994;74(9):843–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32(7):855–97.

    Article  CAS  PubMed  Google Scholar 

  33. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991;83(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  34. Gutman J, Berman DS, Freeman M, Rozanski A, Maddahi J, Waxman A, et al. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: relationship to the degree of coronary artery stenosis. Am Heart J. 1983;106(5 Pt 1):989–95.

    Article  CAS  PubMed  Google Scholar 

  35. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988;12(6):1456–63.

    Article  CAS  PubMed  Google Scholar 

  36. Cloninger KG, DePuey EG, Garcia EV, Roubin GS, Robbins WL, Nody A, et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol. 1988;12(4):955–63.

    Article  CAS  PubMed  Google Scholar 

  37. Yang LD, Berman DS, Kiat H, Resser KJ, Friedman JD, Rozanski A, et al. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol. 1990;15(2):334–40.

    Article  CAS  PubMed  Google Scholar 

  38. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23(3):606–39.

    Article  PubMed  Google Scholar 

  39. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32(3):217–38.

    Article  CAS  PubMed  Google Scholar 

  40. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation. 1999;99(4):578–88.

    Article  CAS  PubMed  Google Scholar 

  41. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.

    Article  CAS  PubMed  Google Scholar 

  42. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23(5):321–36.

    Article  CAS  PubMed  Google Scholar 

  43. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions: potential for pharmacological interventions. Cardiovasc Res. 1997;33(2):243–57.

    Article  CAS  PubMed  Google Scholar 

  44. Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol. 1998;274(4):H1239–47.

    CAS  PubMed  Google Scholar 

  45. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10(6):238–45.

    Article  CAS  PubMed  Google Scholar 

  46. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994;219(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  47. Egert S, Nguyen N, Schwaiger M. Myocardial glucose transporter GLUT1: translocation induced by insulin and ischemia. J Mol Cell Cardiol. 1999;31(7):1337–44.

    Article  CAS  PubMed  Google Scholar 

  48. Dilsizian V. 18F-FDG uptake as a surrogate marker for antecedent ischemia. J Nucl Med. 2008;49(12):1909–11.

    Article  PubMed  Google Scholar 

  49. Avril N. GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med. 2004;45(6):930–2.

    CAS  PubMed  Google Scholar 

  50. Beanlands RS, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40(10):1735–43.

    Article  PubMed  Google Scholar 

  51. Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med. 1991;32(8):1518–25.

    CAS  PubMed  Google Scholar 

  52. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH, et al. PET myocardial glucose metabolism and perfusion imaging: Part 1-Guidelines for data acquisition and patient preparation. J Nucl Cardiol. 2003;10(5):543–56.

    Article  PubMed  Google Scholar 

  53. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med. 2001;42(12):1730–6.

    CAS  PubMed  Google Scholar 

  54. Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med. 1994;35(6):989–98.

    CAS  PubMed  Google Scholar 

  55. Vosper H. Niacin: a re-emerging pharmaceutical for the treatment of dyslipidaemia. Br J Pharmacol. 2009;158(2):429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hannah JS, Bodkin NL, Paidi MS, Anh-Le N, Howard BV, Hansen BC. Effects of Acipimox on the metabolism of free fatty acids and very low lipoprotein triglyceride. Acta Diabetol. 1995;32(4):279–83.

    Article  CAS  PubMed  Google Scholar 

  57. Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH, et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med. 1997;24(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  58. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992;33(7):1255–62.

    CAS  PubMed  Google Scholar 

  59. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187–226.

    Article  PubMed  Google Scholar 

  60. Wiefels C, Kandolin R, Small GR, Beanlands R. PET and SPECT evaluation of viable dysfunctional myocardium. In: Mesquita CT, Rezende MF, editors. Nuclear cardiology. Berlin: Springer; 2021.

    Google Scholar 

  61. Schelbert HR, Beanlands R, Bengel F, Knuuti J, Dicarli M, Machac J, et al. PET myocardial perfusion and glucose metabolism imaging: Part 2-Guidelines for interpretation and reporting. J Nucl Cardiol. 2003;10(5):557–71.

    Article  PubMed  Google Scholar 

  62. Erthal F, Aleksova N, Chong AY, de Kemp RA, Beanlands RSB. Microvascular function, is there a link to myocardial viability: is this another piece to the puzzle? J Nucl Cardiol. 2017;24(5):1651–6.

    Article  PubMed  Google Scholar 

  63. Paternostro G, Camici PG, Lammerstma AA, Marinho N, Baliga RR, Kooner JS, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest. 1996;98(9):2094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95.

    Article  PubMed  Google Scholar 

  65. Anselm DD, Anselm AH, Renaud J, Atkins HL, de Kemp R, Burwash IG, et al. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol. 2011;18(4):657–67.

    Article  PubMed  Google Scholar 

  66. Thompson K, Saab G, Birnie D, Chow BJ, Ukkonen H, Ananthasubramaniam K, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med. 2006;47(11):1763–8.

    CAS  PubMed  Google Scholar 

  67. Fukuoka Y, Nakano A, Tama N, Hasegawa K, Ikeda H, Morishita T, et al. Impaired myocardial microcirculation in the flow-glucose metabolism mismatch regions in revascularized acute myocardial infarction. J Nucl Cardiol. 2017;24(5):1641–50.

    Article  PubMed  Google Scholar 

  68. Birnie D, de Kemp RA, Tang AS, Ruddy TD, Gollob MH, Guo A, et al. Reduced septal glucose metabolism predicts response to cardiac resynchronization therapy. J Nucl Cardiol. 2012;19(1):73–83.

    Article  PubMed  Google Scholar 

  69. Hansen AK, Gejl M, Bouchelouche K, Tolbod LP, Gormsen LC. Reverse mismatch pattern in cardiac 18F-FDG viability PET/CT is not associated with poor outcome of revascularization: a retrospective outcome study of 91 patients with heart failure. Clin Nucl Med. 2016;41(10):e428–35.

    Article  PubMed  Google Scholar 

  70. Marti V, Ballester M, Udina C, Carrio I, Alvarez E, Obrador D, et al. Evaluation of myocardial cell damage by In-111-monoclonal antimyosin antibodies in patients under chronic tricyclic antidepressant drug treatment. Circulation. 1995;91(6):1619–23.

    Article  CAS  PubMed  Google Scholar 

  71. Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120(7):1197–212.

    Article  CAS  PubMed  Google Scholar 

  72. Kalra DK, Zhu X, Ramchandani MK, Lawrie G, Reardon MJ, Lee-Jackson D, et al. Increased myocardial gene expression of tumor necrosis factor-alpha and nitric oxide synthase-2: a potential mechanism for depressed myocardial function in hibernating myocardium in humans. Circulation. 2002;105(13):1537–40.

    Article  CAS  PubMed  Google Scholar 

  73. Shan K, Constantine G, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation. 2004;109(11):1328–34.

    Article  PubMed  Google Scholar 

  74. Garcia MJ, Kwong RY, Scherrer-Crosbie M, Taub CC, Blankstein R, Lima J, et al. State of the art: imaging for myocardial viability: a scientific statement from the American Heart Association. Circ Cardiovasc Imaging. 2020;13(7):e000053.

    Article  PubMed  Google Scholar 

  75. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Marin-Neto JA, Arrighi JA, et al. Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 1992;20(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  76. Baer FM, Smolarz K, Jungehulsing M, Beckwilm J, Theissen P, Sechtem U, et al. Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J. 1992;123(3):636–45.

    Article  CAS  PubMed  Google Scholar 

  77. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation. 1995;91(4):1006–15.

    Article  CAS  PubMed  Google Scholar 

  78. Kuhl HP, van der Weerdt A, Beek A, Visser F, Hanrath P, van Rossum A. Relation of end-diastolic wall thickness and the residual rim of viable myocardium by magnetic resonance imaging to myocardial viability assessed by fluorine-18 deoxyglucose positron emission tomography. Am J Cardiol. 2006;97(4):452–7.

    Article  PubMed  Google Scholar 

  79. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation. 2004;109(18):2172–4.

    Article  PubMed  Google Scholar 

  80. Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5(5):494–508.

    Article  PubMed  Google Scholar 

  81. Constantinides CD, Kraitchman DL, O'Brien KO, Boada FE, Gillen J, Bottomley PA. Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med. 2001;46(6):1144–51.

    Article  CAS  PubMed  Google Scholar 

  82. Kim RJ, Lima JA, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, et al. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation. 1997;95(7):1877–85.

    Article  CAS  PubMed  Google Scholar 

  83. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation. 1999;100(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  84. Souto ALM, Souto RM, Teixeira ICR, Nacif MS. Myocardial viability on cardiac magnetic resonance. Arq Bras Cardiol. 2017;108(5):458–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. van Zijl PCM, Brindle K, Lu H, Barker PB, Edden R, Yadav N, et al. Hyperpolarized MRI, functional MRI, MR spectroscopy and CEST to provide metabolic information in vivo. Curr Opin Chem Biol. 2021;63:209–18.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ramalho M, AlObaidy M, Catalano OA, Guimaraes AR, Salvatore M, Semelka RC. MR-PET of the body: early experience and insights. Eur J Radiol Open. 2014;1:28–39.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Juneau D, Chow BJW, Beanlands R, Crean AM. Heart teams for cardiac imaging: the right test at the right time for the right patient. Cham: Springer; 2019. p. 109–25.

    Google Scholar 

  88. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol. 1997;30(7):1693–700.

    Article  CAS  PubMed  Google Scholar 

  89. Mule JD, Bax JJ, Zingone B, Martinelli F, Burelli C, Stefania A, et al. The beneficial effect of revascularization on jeopardized myocardium: reverse remodeling and improved long-term prognosis. Eur J Cardiothorac Surg. 2002;22(3):426–30.

    Article  PubMed  Google Scholar 

  90. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989;64(14):860–5.

    Article  CAS  PubMed  Google Scholar 

  91. Siebelink HM, Blanksma PK, Crijns HJ, Bax JJ, van Boven AJ, Kingma T, et al. No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J Am Coll Cardiol. 2001;37(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  92. Beanlands RS, Ruddy TD, Freeman M, Nichol G. Patient management guided by viability imaging. J Am Coll Cardiol. 2001;38(4):1271–3.

    Article  CAS  PubMed  Google Scholar 

  93. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364(17):1617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 2016;374(16):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Panza JA, Ellis AM, Al-Khalidi HR, Holly TA, Berman DS, Oh JK, et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med. 2019;381(8):739–48.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mielniczuk LM, Beanlands RS. Does imaging-guided selection of patients with ischemic heart failure for high risk revascularization improve identification of those with the highest clinical benefit?: Imaging-guided selection of patients with ischemic heart failure for high-risk revascularization improves identification of those with the highest clinical benefit. Circ Cardiovasc Imaging. 2012;5(2):262–70. discussion 70

    Article  PubMed  Google Scholar 

  97. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42(7):1318–33.

    Article  PubMed  Google Scholar 

  98. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53(23):2201–29.

    Article  PubMed  Google Scholar 

  99. Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol. 2016;67(24):2874–87.

    Article  PubMed  Google Scholar 

  100. O'Meara E, Mielniczuk LM, Wells GA, deKemp RA, Klein R, Coyle D, et al. Alternative imaging modalities in ischemic heart failure (AIMI-HF) IMAGE HF Project I-A: study protocol for a randomized controlled trial. Trials. 2013;14:218.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hall AB, Ziadi MC, Guo A, Chen L, de Kemp R, Renaud J, et al. 516 Cardiac FDG PET results impact decisions and identify patients likely to benefit from revascularization in a multi-center provincial registry (CADRE). Can J Cardiol. 2021;27(5):S249–50.

    Article  Google Scholar 

  102. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16(6):661–9.

    PubMed  Google Scholar 

  103. Vitadello T, Kunze KP, Nekolla SG, Langwieser N, Bradaric C, Weis F, et al. Hybrid PET/MR imaging for the prediction of left ventricular recovery after percutaneous revascularisation of coronary chronic total occlusions. Eur J Nucl Med Mol Imaging. 2020;47(13):3074–83.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94(8):1142–9.

    Article  CAS  PubMed  Google Scholar 

  105. Luisi AJ Jr, Suzuki G, Dekemp R, Haka MS, Toorongian SA, Canty JM Jr, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46(8):1368–74.

    CAS  PubMed  Google Scholar 

  106. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9.

    Article  PubMed  Google Scholar 

  107. Zelt JGE, Britt D, Mair BA, Rotstein BH, Quigley S, Walter O, et al. Regional distribution of fluorine-18-flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation. JACC Cardiovasc Imaging. 2021;14(7):1425–36.

    Article  PubMed  Google Scholar 

  108. Wiefels C, Beanlands RSB, Chong AY. Imaging in CTO: should you look before you open? J Nucl Cardiol. 2020;28(6):2609–12.

    Article  PubMed  Google Scholar 

  109. Neumann FJ, Hochholzer W, Siepe M. ESC/EACTS guidelines on myocardial revascularization 2018: the most important innovations. Herz. 2018;43(8):689–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

KEB is a cardiology resident at the University of Ottawa Heart Institute and holds a Canadian Institutes of Health Research Fellowship (FRN: 171284).

RSB was a career investigator supported by the Heart and Stroke Foundation of Ontario; is a distinguished research chair supported by the University of Ottawa, and the University of Ottawa Heart Institute’s Vered chair in cardiology. He receives research support and honoraria from Lantheus Medical Imaging, Jubilant DraxImage and GE.

AMC is a consultant cardiologist at the University of Ottawa Heart Institute and is on the speakers bureau for Bristol Myers Squibb on matters relating to hypertrophic cardiomyopathy.

CW was cardiac imaging fellow at the University of Ottawa Heart Institute and holds an UOHI Division of Cardiology Kaufman-Chan Endowed Fellowship.

RdK is a consultant for Jubilant DraxImage, and receives license revenues from Jubilant DraxImage and INVIA Medical Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Emery Boczar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boczar, K.E., Wiefels, C., Crean, A.M., deKemp, R.A., Beanlands, R. (2022). Viability Imaging. In: Pelletier-Galarneau, M., Martineau, P. (eds) FDG-PET/CT and PET/MR in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-09807-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09807-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09806-2

  • Online ISBN: 978-3-031-09807-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics