Skip to main content

Coronary Artery Disease

  • Chapter
  • First Online:
FDG-PET/CT and PET/MR in Cardiovascular Diseases

Abstract

PET imaging of molecular targets in coronary artery disease is a rapidly evolving field with the potential to advance our capabilities in evaluating moderate to high-risk coronary atherosclerosis in the clinical setting. Here, we review three such tracers in coronary artery disease, namely 18F-fluorodeoxyglucose (FDG), 18F-NaF, and 68Ga-Pentixafor, as well as strategies developed to evaluate apparently stable coronary atherosclerosis and predict acute coronary syndromes. Additionally, we detail ongoing avenues of research in novel molecular targets that hold the promise of a theranostics approach to mitigate atherosclerosis progression and ensuing thrombotic complications. By providing mechanistic insight into the local milieu affecting atherosclerosis, these molecular PET imaging approaches will continue to shape the landscape of clinical risk assessment of coronary artery disease and improve the delivery of personalized patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-NaF:

18F-Sodium fluoride

18F-FDG:

18F-Fluorodeoxyglucose

18F-FLT:

18F-Labeled thymidine

ACS:

Acute coronary syndrome

CAC:

Coronary artery calcium

CAD:

Coronary artery disease

cMRI:

Cardiac magnetic resonance imaging

CT:

Computed tomography

CXCL12:

CXC-motif chemokine ligand 12

CXCR4:

CXC-motif chemokine receptor 4

HDL:

High-density lipoprotein

LAD:

Left anterior descending artery

LCx:

Left circumflex artery

LDL:

Low-density lipoprotein

NaF:

18F-Sodium fluoride

oxLDL:

Oxidized low-density lipoprotein

PET:

Positron emission tomography

RCA:

Right coronary artery

STEMI:

ST-Elevation myocardial infarction

SUV:

Standardized uptake value

TBR:

Target-to-background ratio

References

  1. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13.

    Article  PubMed  Google Scholar 

  2. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci. 2018;132(12):1243–52.

    Article  CAS  Google Scholar 

  3. GisterĂ¥ A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–80.

    Article  PubMed  Google Scholar 

  4. Abdelbaky A, Tawakol A. Noninvasive positron emission tomography imaging of coronary arterial inflammation. Curr Cardiovasc Imaging Rep. 2011;4(1):41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol. 2018;25(5):1774–83.

    Article  PubMed  Google Scholar 

  6. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110(22):3424–9.

    Article  PubMed  Google Scholar 

  7. Mettler F, Guiberteau M. Essentials of nuclear medicine imaging. Amsterdam: Elsevier; 2012.

    Google Scholar 

  8. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–14.

    Article  CAS  PubMed  Google Scholar 

  9. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115(7):662–7.

    Article  CAS  PubMed  Google Scholar 

  10. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.

    Article  PubMed  Google Scholar 

  11. Liu M, Gomez D. Smooth muscle cell phenotypic diversity. Arterioscler Thromb Vasc Biol. 2019;39(9):1715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med. 2001;26(4):314–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mayer M, Borja AJ, Hancin EC, Auslander T, Revheim ME, Moghbel MC, et al. Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front Physiol. 2020;11:511391.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12(3):294–301.

    Article  PubMed  Google Scholar 

  15. Krishnan S, Otaki Y, Doris M, Slipczuk L, Arnson Y, Rubeaux M, et al. Molecular imaging of vulnerable coronary plaque: a pathophysiologic perspective. J Nucl Med. 2017;58(3):359–64.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med. 2012;53(4):575–83.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Q, Williams R, Healy CL, Wright CD, Wu SC, O’Connell TD. An association between gene expression and better survival in female mice following myocardial infarction. J Mol Cell Cardiol. 2010;49(5):801–11.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med. 2004;45(7):1245–50.

    CAS  PubMed  Google Scholar 

  19. Sheikine Y, Akram K. FDG-PET imaging of atherosclerosis: do we know what we see? Atherosclerosis. 2010;211(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  20. Gogia S, Kaiser Y, Tawakol A. Imaging high-risk atherosclerotic plaques with PET. Curr Treat Options Cardiovasc Med. 2016;18(12):76.

    Article  PubMed  Google Scholar 

  21. Rogers IS, Tawakol A. Imaging of coronary inflammation with FDG-PET: feasibility and clinical hurdles. Curr Cardiol Rep. 2011;13(2):138–44.

    Article  PubMed  Google Scholar 

  22. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6(12):1250–9.

    Article  PubMed  Google Scholar 

  23. Iwatsuka R, et al. Arterial inflammation measured by 18F-FDG-PET-CT to predict coronary events in older subjects. Atherosclerosis. 2017;268:49–54.

    Article  PubMed  Google Scholar 

  24. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-Fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24.

    Article  PubMed  Google Scholar 

  25. Rudd JHF, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible. Implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50(9):892–6.

    Article  PubMed  Google Scholar 

  26. Rudd JHF, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871–8.

    Article  PubMed  Google Scholar 

  27. Chen W, Dilsizian V. 18F-fluorodeoxyglucose pet imaging of coronary atherosclerosis and plaque inflammation. Curr Cardiol Rep. 2010;12(2):179–84.

    Article  PubMed  Google Scholar 

  28. Singh P, Emami H, Subramanian S, Maurovich-Horvat P, Marincheva-Savcheva G, Medina HM, et al. Coronary plaque morphology and the anti-inflammatory impact of atorvastatin. Circ Cardiovasc Imaging. 2016;9(12):1–9.

    Article  Google Scholar 

  29. Ali A, Tawakol A. FDG PET/CT imaging of carotid atherosclerosis. Neuroimaging Clin N Am. 2016;26(1):45–54.

    Article  PubMed  Google Scholar 

  30. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3(4):388–97.

    Article  PubMed  Google Scholar 

  31. Lee SJ, Young KO, Eun JL, Joon YC, Kim BT, Lee KH. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med. 2008;49(8):1277–82.

    Article  CAS  PubMed  Google Scholar 

  32. Wassélius JA, Larsson SA, Jacobsson H. FDG-accumulating atherosclerotic plaques identified with 18F-FDG-PET/CT in 141 patients. Mol Imaging Biol. 2009;11(6):455–9.

    Article  PubMed  Google Scholar 

  33. James OG, Christensen JD, Wong TZ, Neto SB, Koweek LM. Utility of FDG PET/CT in inflammatory cardiovascular disease. Radiographics. 2011;31(5):1271–86.

    Article  PubMed  Google Scholar 

  34. Munoz C, Kunze KP, Neji R, Vitadello T, Rischpler C, Botnar RM, et al. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation. Eur J Nucl Med Mol Imaging. 2018;45(11):1975–86.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Robson PM, Dweck MR, Trivieri MG, Abgral R, Karakatsanis NA, Contreras J, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017;10(10):1103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. He S, Dai R, Chen Y, Bai H. Optimal electrocardiographically triggered phase for reducing motion artifact at electron-beam CT in the coronary artery. Acad Radiol. 2001;8(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  37. Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J. 2016;37(39):2974–2980b.

    Article  PubMed  Google Scholar 

  38. McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging. 2018;45(12):2190–200.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schelbert HR. PET contributions to understanding normal and abnormal cardiac perfusion and metabolism. Ann Biomed Eng. 2000;28(8):922–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kim S, Lee S, Kim JB, Na JO, Choi CU, Lim H, et al. Concurrent carotid inflammation in acute coronary syndrome as assessed by 18 F-FDG PET / CT: a possible mechanistic link for ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(11):2547–54.

    Article  PubMed  Google Scholar 

  41. Thie A. SUVs: methods and implications for usage. J Nucl Med. 2004;45(9):1431–4.

    PubMed  Google Scholar 

  42. Mayer J, Jin Y, Wurster TH, Makowski MR, Kolbitsch C. Evaluation of synergistic image registration for motion-corrected coronary NaF-PET-MR. Philos Trans R Soc A Math Phys Eng Sci. 2021;379(2200):20200202.

    Article  CAS  Google Scholar 

  43. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  44. Rubeaux M, Joshi NV, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques. J Nucl Med. 2016;57(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  45. BĂ¼ther F, Dawood M, Stegger L, WĂ¼bbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med. 2009;50(5):674–81.

    Article  PubMed  Google Scholar 

  46. Teräs M, Kokki T, Durand-Schaefer N, Noponen T, Pietilä M, Kiss J, et al. Dual-gated cardiac PET-clinical feasibility study. Eur J Nucl Med Mol Imaging. 2010;37(3):505–16.

    Article  PubMed  Google Scholar 

  47. Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, et al. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol. 2008;53(13):3661–79.

    Article  PubMed  Google Scholar 

  48. Lucignani G. Respiratory and cardiac motion correction with 4D PET imaging: shooting at moving targets. Eur J Nucl Med Mol Imaging. 2009;36(2):315–9.

    Article  PubMed  Google Scholar 

  49. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190(2):W151–6.

    Article  PubMed  Google Scholar 

  50. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–8.

    Article  PubMed  Google Scholar 

  51. Dunphy MPS, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46(8):1278–84.

    PubMed  Google Scholar 

  52. Lu Y, Grant C, Xie K, Sweiss NJ. Suppression of myocardial 18F-FDG uptake through prolonged high-fat, high-protein, and very-low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. Clin Nucl Med. 2017;42(2):88–94.

    Article  PubMed  Google Scholar 

  53. Christopoulos G, Jouni H, Acharya GA, Blauwet LA, Kapa S, Bois J, et al. Suppressing physiologic 18-fluorodeoxyglucose uptake in patients undergoing positron emission tomography for cardiac sarcoidosis: the effect of a structured patient preparation protocol. J Nucl Cardiol. 2019;28(2):664–74.

    Google Scholar 

  54. Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, Li W, et al. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging. 2012;5(10):990–9.

    Article  PubMed  Google Scholar 

  55. Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Kubo Y, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2017;263:385–92.

    Article  CAS  PubMed  Google Scholar 

  56. Derlin T, TĂ³th Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by18F-FDG PET, active mineral deposition assessed by18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52(7):1020–7.

    Article  PubMed  Google Scholar 

  57. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5.

    Article  PubMed  Google Scholar 

  58. Vancheri F, Longo G, Vancheri S, Danial JSH, Henein MY. Coronary artery microcalcification: imaging and clinical implications. Diagnostics (Basel). 2019;9(4):1–17.

    Google Scholar 

  59. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.

    Article  CAS  PubMed  Google Scholar 

  60. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmnani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006;103(40):14678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Høilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging. 2020;47:1538–51.

    Article  PubMed  Google Scholar 

  62. Li L, Li X, Jia Y, Fan J, Wang H, Fan C, et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging. 2018;45(12):2181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kwiecinski J, Tzolos E, Adamson PD, Cadet S, Moss AJ, Joshi N, et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol. 2020;75(24):3061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwiecinski J, Cadet S, Daghem M, Lassen ML, Dey D, Dweck MR, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging. 2020;47(7):1736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitagawa T, Yamamoto H, Nakamoto Y, Sasaki K, Toshimitsu S, Tatsugami F, et al. Predictive value of18F-sodium fluoride positron emission tomography in detecting high-risk coronary artery disease in combination with computed tomography. J Am Heart Assoc. 2018;7(20):e010224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raggi P, Senior P, Shahbaz S, Kaul P, Hung R, Coulden R, et al. 18F-sodium fluoride imaging of coronary atherosclerosis in ambulatory patients with diabetes mellitus. Arterioscler Thromb Vasc Biol. 2019;39(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  67. Marafi F, Esmail A, Rasheed R, Alkandari F, Usmani S. Novel weight-based dose threshold for 18F-NAF PET-CCT imaging using advanced PET-Ct systems: a potential tool for reducing radiation burden. Nucl Med Commun. 2017;38(9):764–70.

    Article  PubMed  Google Scholar 

  68. Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, et al. Evolving role of molecular imaging with 18F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14:115–25.

    Article  PubMed  Google Scholar 

  69. Weiberg D, Thackeray JT, Daum G, Sohns JM, Kropf S, Wester HJ, et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68 Ga-Pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med. 2018;59(2):266–72.

    Article  CAS  PubMed  Google Scholar 

  70. Kircher M, Tran-Gia J, Kemmer L, Zhang X, Schirbel A, Werner RA, et al. Imaging inflammation in atherosclerosis with CXCR4-directed 68Ga-Pentixafor PET/CT: correlation with 18F-FDG PET/CT. J Nucl Med. 2020;61(5):751–6.

    Article  CAS  PubMed  Google Scholar 

  71. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1417–26.

    Article  PubMed  Google Scholar 

  72. Lapa C, Reiter T, Werner RA, Ertl G, Wester HJ, Buck AK, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression after myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1466–8.

    Article  PubMed  Google Scholar 

  73. Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, et al. [68Ga]Pentixafor-PET/MRI for the detection of chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging. 2018;45(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  74. Derlin T, Sedding DG, Dutzmann J, Haghikia A, König T, Napp LC, et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]Pentixafor PET/CT. Eur J Nucl Med Mol Imaging. 2018;45(11):1934–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hess A, Derlin T, Koenig T, Diekmann J, Wittneben A, Wang Y, et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J. 2020;41(37):3564–75.

    Article  CAS  PubMed  Google Scholar 

  76. Ye YX, Calcagno C, Binderup T, Courties G, Keliher EJ, Wojtkiewicz GR, et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ Res. 2015;117(10):835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Laitinen IEK, Luoto P, NĂ¥gren K, Marjamäki PM, Silvola JMU, Hellberg S, et al. Uptake of 11C-choline in mouse atherosclerotic plaques. J Nucl Med. 2010;51(5):798–802.

    Article  PubMed  Google Scholar 

  78. Vöö S, Kwee RM, Sluimer JC, Schreuder FHBM, Wierts R, Bauwens M, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography. Circ Cardiovasc Imaging. 2016;9(5):e004467.

    Article  PubMed  Google Scholar 

  79. Pérez-Medina C, Fayad ZA, Mulder WJM. Atherosclerosis Immunoimaging by positron emission tomography. Arterioscler Thromb Vasc Biol. 2020;40(4):865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19(6):526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rinne P, Hellberg S, Kiugel M, Virta J, Li XG, Käkelä M, et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol. 2016;18(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  82. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillesen H, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gaemperli O, Shalhoub J, Owen DRJ, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10.

    Article  CAS  PubMed  Google Scholar 

  85. Varasteh Z, Mohanta S, Li Y, LĂ³pez Armbruster N, Braeuer M, Nekolla SG, et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68 Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res. 2019;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ederle J, Dobson J, Featherstone RL, Bonati LH, van der Worp HB, de Borst GJ, et al. Carotid artery stenting compared with endarterectomy in patients with symptomatic carotid stenosis (international carotid stenting study): an interim analysis of a randomised controlled trial. Lancet. 2010;375(9719):985–97.

    Article  PubMed  Google Scholar 

  87. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

VA Merit BX004558, UCLA Cardiovascular Discovery Fund/Lauren B. Leichtman and Arthur E. Levine Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René R. Sevag Packard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinney, J.R., Menon, N., Sevag Packard, R.R. (2022). Coronary Artery Disease. In: Pelletier-Galarneau, M., Martineau, P. (eds) FDG-PET/CT and PET/MR in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-09807-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09807-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09806-2

  • Online ISBN: 978-3-031-09807-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics