Skip to main content

Cardiac Positron Emission Tomography Basics

  • Chapter
  • First Online:
FDG-PET/CT and PET/MR in Cardiovascular Diseases

Abstract

This chapter reviews the radiation physics principles underlying PET Imaging. Radiation detectors and PET detector systems are discussed. In addition, image reconstruction and image correction are presented, with emphasis on cardiac PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Derenzo SE, Budinger TF, Huesman RH, Cahoon JL, Vuletich T. Imaging properties of a positron tomograph with 280 Bgo crystals. IEEE Trans Nucl Sci. 1981;28(1):81–9.

    Article  Google Scholar 

  2. Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging (Bellingham). 2017;4(1):011013.

    Article  Google Scholar 

  3. Dirac PAM, Fowler RH. A theory of electrons and protons. Proc R Soc Lond Ser Contain Pap Math Phys Character. 1930;126(801):360–5.

    CAS  Google Scholar 

  4. Anderson CD. The positive electron. Phys Rev. 1933;43(6):491–4.

    Article  CAS  Google Scholar 

  5. Cattin P, Harders M, Hug J, Sierra R, Szekely G. Computer-supported segmentation of radiological data. In: Suri JS, Wilson DL, Laxminarayan S, editors. Handbook of biomedical image analysis. Segmentation models part B, vol. 2. Boston, MA: Springer US. p. 753–98. https://doi.org/10.1007/0-306-48606-7_14.

  6. Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med. 2004;34(2):87–111.

    Article  Google Scholar 

  7. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24(4):379–93.

    Article  CAS  Google Scholar 

  8. Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J, Yokoyama A. A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J Nucl Med. 1989;30(11):1838–42.

    CAS  PubMed  Google Scholar 

  9. Zweit J, Goodall R, Cox M, Babich JW, Potter GA, Sharma HL, et al. Development of a high performance zinc-62/copper-62 radionuclide generator for positron emission tomography. Eur J Nucl Med. 1992;19(6):418–25.

    Article  CAS  Google Scholar 

  10. Jødal L, Le Loirec C, Champion C. Positron range in PET imaging: non-conventional isotopes. Phys Med Biol. 2014;59(23):7419–34.

    Article  Google Scholar 

  11. Jødal L, Le Loirec C, Champion C. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol. 2012;57(12):3931–43.

    Article  Google Scholar 

  12. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.

    Article  Google Scholar 

  13. Derenzo SE, Budinger TF. Resolution limit for positron-imaging devices. J Nucl Med. 1977;18(5):491.

    CAS  PubMed  Google Scholar 

  14. Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5(1):35–46.

    Article  CAS  Google Scholar 

  15. Balsara RD, Chapman SE, Sander IM, Donahue DL, Liepert L, Castellino FJ, et al. Non-invasive imaging and analysis of cerebral ischemia in living rats using positron emission tomography with 18F-FDG. J Vis Exp. 2014;94:51495.

    Google Scholar 

  16. Ramirez RA, Wong W-H, Kim S, Baghaei H, Li H, Wang Y, et al. A comparison of BGO, GSO, MLS, LGSO, LYSO and LSO scintillation materials for high-spatial-resolution animal PET detectors. In: IEEE nuclear science symposium conference record, vol. 2005; 2005. p. 2835–9.

    Google Scholar 

  17. Nikl M. Scintillation detectors for X-rays. Meas Sci Technol. 2006 Feb;10(17):R37.

    Article  Google Scholar 

  18. Lecoq P. Scintillation detectors for charged particles and photons. In: Fabjan CW, Schopper H, editors. Particle physics reference library: volume 2: detectors for particles and radiation. Cham: Springer; 2020. p. 45–89. https://doi.org/10.1007/978-3-030-35318-6_3.

    Chapter  Google Scholar 

  19. Melcher CL. Scintillation crystals for PET. J Nucl Med. 2000;41(6):1051–5.

    CAS  PubMed  Google Scholar 

  20. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;33(1):460–3.

    Article  Google Scholar 

  21. Herman GT, Carvalho BM. Simultaneous fuzzy segmentation of medical images. In: Suri JS, Wilson DL, Laxminarayan S, editors. Handbook of biomedical image analysis. Segmentation models part B, vol. 2. Boston, MA: Springer; 2005. p. 661–705. https://doi.org/10.1007/0-306-48606-7_12.

    Chapter  Google Scholar 

  22. Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng. 2011;39(4):1358–77.

    Article  Google Scholar 

  23. Marrocchesi PS, Bagliesi MG, Batkov K, Bigongiari G, Kim MY, Lomtadze T, et al. Active control of the gain of a 3 mm×3 mm silicon PhotoMultiplier. Nucl Instrum Meth Phys Res A. 2009;602:391–5.

    Article  CAS  Google Scholar 

  24. Mirzoyan R, Laatiaoui M, Teshima M. Very high quantum efficiency PMTs with bialkali photo-cathode. Nucl Instrum Meth Phys Res Sect Accel Spectr Detect Assoc Equip. 2006;567(1):230–2.

    Article  CAS  Google Scholar 

  25. Dam H, Vinke R, Dendooven D, Loehner H, Beekman F, Schaart D. A comprehensive model of the response of silicon photomultipliers. Nucl Sci IEEE Trans. 2010;57:2254–66.

    Article  Google Scholar 

  26. Jha AK, van Dam HT, Kupinski MA, Clarkson E. Simulating silicon photomultiplier response to scintillation light. IEEE Trans Nucl Sci. 2013;30(1):336–51.

    Article  Google Scholar 

  27. Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging. 1986;5(4):170–6.

    Article  CAS  Google Scholar 

  28. Fahey FH. Data Acquisition in PET Imaging. J Nucl Med Technol. 2002;30(2):39–49.

    PubMed  Google Scholar 

  29. Prince JL, Links J. Medical imaging signals and systems. 1st ed. Upper Saddle River, NJ: Prentice Hall; 2005. p. 496.

    Google Scholar 

  30. Turkington TG. Introduction to PET instrumentation. J Nucl Med Technol. 2001;29(1):4–11.

    CAS  PubMed  Google Scholar 

  31. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET∕CT Discovery-690. Med Phys. 2011;38(10):5394–411.

    Article  CAS  Google Scholar 

  32. Anna M, Oddbjørn K, Live S, Erik EP. Quantitative comparison of PET performance—Siemens Biograph mCT and mMR. EJNMMI Physics. Goa. 2016;3(1):5. https://doi.org/10.1186/s40658-016-0142-7.

  33. Kjærnes S, Birger ØL, Live A, Maria EA. Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems—a phantom study. EJNMMI Physics. Karlberg. 2019;6(1):16. https://doi.org/10.1186/s40658-019-0251-1.

  34. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996;41(1):153–76.

    Article  CAS  Google Scholar 

  35. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer; 1996. p. 255–68. https://doi.org/10.1007/978-94-015-8749-5_18.

    Chapter  Google Scholar 

  36. Moncayo VM, Garcia EV. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT: effect on clinical practice. J Nucl Cardiol. 2018;25(2):606–8.

    Article  Google Scholar 

  37. Positron Emission Tomography. Clinical practice. Radiology. 2007;244(2):380.

    Article  Google Scholar 

  38. Moszynski M, Kapusta M, Wolski D, Szawlowski M, Klamra W. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers. IEEE Trans Nucl Sci. 1998;45(3):472–7.

    Article  CAS  Google Scholar 

  39. ter Weele DN, Schaart DR, Dorenbos P. Scintillation detector timing resolution; a study by ray tracing software. IEEE Trans Nucl Sci. 2015;62(5):1972–80.

    Article  Google Scholar 

  40. Count rate lost model for D690. GE; 2015.

    Google Scholar 

  41. Ostertag H, Kübler WK, Doll J, Lorenz WJ. Measured attenuation correction methods. Eur J Nucl Med. 1989;15(11):722–6.

    Article  CAS  Google Scholar 

  42. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  CAS  Google Scholar 

  43. Bracewell RN. Strip integration in radio astronomy. Aust J Phys. 1956;9:198.

    Article  Google Scholar 

  44. Scudder HJ. Introduction to computer aided tomography. Proc IEEE. 1978;66(6):628–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hunter, C.R.R.N., deKemp, R.A. (2022). Cardiac Positron Emission Tomography Basics. In: Pelletier-Galarneau, M., Martineau, P. (eds) FDG-PET/CT and PET/MR in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-09807-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09807-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09806-2

  • Online ISBN: 978-3-031-09807-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics