Skip to main content

Brain Network Functional Connectivity Clinical Relevance and Predictive Diagnostic Models in Anterior Knee Pain Patients

  • Chapter
  • First Online:
Anterior Knee Pain and Patellar Instability

Abstract

Anterior knee pain (AKP) is the most common reason young people consult with a knee orthopedic surgeon. However, despite its great prevalence and the abundance of research, the pathogenesis of AKP is still debated. AKP literature is dominated by local biomechanical models that attempt to explain the mechanisms of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valdes-Hernandez PA, Montesino-Goicolea S, Hoyos L, et al. Resting-state functional connectivity patterns are associated with worst pain duration in community-dwelling older adults. Pain Reports. 2021;6: e978.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Magnetic Resonance Imaging (MRI). https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri.

  3. Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol. 2018;39:1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Loggia ML, Jensen KB. Imaging pain in the human brain. In: Imaging of the Human Brain in Health and Disease (Elsevier, 2014), 427–451.

    Google Scholar 

  5. Kucyi A, Salomons T, Davis K. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proc Natl Acad Sci USA. 2013;110:18692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moseley G. A pain neuromatrix approach to patients with chronic pain. Man Ther. 2003;8:130–40.

    Article  CAS  PubMed  Google Scholar 

  7. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102:9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tracey I, Mantyh P. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–91.

    Article  CAS  PubMed  Google Scholar 

  9. Yang S, Chang MC. Chronic pain: structural and functional changes in brain structures and associated negative affective states. Int J Mol Sci. 2019;20:3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baliki MN, Geha PY, Apkarian AV, et al. beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 2008;28.

    Google Scholar 

  11. Thorp S, Healthcare CR, Thorp SL, et al. Functional connectivity alterations: novel therapy and future implications in chronic pain management. Pain Physician. 2018;21:207–14.

    Article  Google Scholar 

  12. Sutton RT, Pincock D, Baumgart DC, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:1–10.

    Google Scholar 

  13. Classification Algorithm in Machine Learning. https://www.javatpoint.com/classification-algorithm-in-machine-learning.

  14. Crossley K, Bennell K, Cowan S, et al. Analysis of outcome measures for persons with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil. 2004;85:815–22.

    Article  PubMed  Google Scholar 

  15. Zigmond A, Snaith R. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.

    Article  CAS  PubMed  Google Scholar 

  16. Kori SH, Miller RP, Todd DD. Kinesiophobia: a new view of chronic pain behavior. Pain Mang. 1990;35–43.

    Google Scholar 

  17. Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess. 1995;7:524–32.

    Article  Google Scholar 

  18. Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.

    Article  CAS  PubMed  Google Scholar 

  19. De Andrés J, Ten Esteve A. Predictive clinical decission system using machine learning and imaging biomarkers in patients with neurostimulation therapy: a pilot study. Pain Physician.

    Google Scholar 

  20. Tu Y, Jung M, Gollub RL, et al. Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain. 2019;160:1308.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alshelh Z, Marciszewski KK, Akhter R, et al. Disruption of default mode network dynamics in acute and chronic pain states. NeuroImage Clin. 2018;17:222–31.

    Article  CAS  PubMed  Google Scholar 

  22. Van Ettinger-Veenstra H, Lundberg P, Alföldi P, et al. Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity. 2019.

    Google Scholar 

  23. Pujol J, Macià D, Garcia-Fontanals A, et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain. 2014;155:1492–503.

    Article  PubMed  Google Scholar 

  24. Orestes Pérez A, Jiménez Gutiérrez M, Vega Cisneros L. Regiones del encéfalo vinculadas a la interpretación del dolor. Rev Habanera Ciencias Médicas. 2018;17.

    Google Scholar 

  25. Kucyi A, Moayedi M, Weissman-Fogel I, et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34:3969–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ab Aziz CB, Ahmad AH. The role of the thalamus in modulating pain. Malays J Med Sci. 2006;13:11.

    Google Scholar 

  27. Diekfuss JA, Grooms DR, Nissen KS, et al. Does central nervous system dysfunction underlie patellofemoral pain in young females? Examining brain functional connectivity in association with patient-reported outcomes. J Orthop Res. 2021.

    Google Scholar 

  28. Molina J, Amaro E, da Rocha LGS, et al. Functional resonance magnetic imaging (fMRI) in adolescents with idiopathic musculoskeletal pain: a paradigm of experimental pain. Pediatr Rheumatol. 2017;15:1–10.

    Article  Google Scholar 

  29. Shen W, Tu Y, Gollub R, et al. Visual network alterations in brain functional connectivity in chronic low back pain: a resting state functional connectivity and machine learning study. NeuroImage Clin. 2019;22.

    Google Scholar 

  30. Moulton E, Schmahmann J, Becerra L, et al. The cerebellum and pain: passive integrator or active participator? Brain Res Rev. 2010;65:14–27.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kong J, Loggia ML, Zyloney C, et al. Exploring the brain in pain: activations, deactivations and their relation. Pain. 2010;148:257.

    Article  PubMed  Google Scholar 

  32. Seminowicz DA, Moayedi M. The dorsolateral prefrontal cortex in acute and chronic pain. J Pain. 2017;18:1027.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galambos A, Szabó E, Nagy Z, et al. A systematic review of structural and functional MRI studies on pain catastrophizing. J Pain Res. 2019;12:1155.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol. 2013;8:518–34.

    Article  PubMed  Google Scholar 

  35. Mathur VA, Moayedi M, Keaser ML, et al. High Frequency migraine is associated with lower acute pain sensitivity and abnormal insula activity related to migraine pain intensity, attack frequency, and pain catastrophizing. Front Hum Neurosci. 2016;10:489.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Borsook D, Sava S, Becerra L. The pain imaging revolution: advancing pain into the 21st century. Neurosci. 2010;16:171–85.

    Google Scholar 

  37. Kregel J, Meeus M, Malfliet A, et al. Structural and functional brain abnormalities in chronic low back pain: a systematic review☆. Semin Arthritis Rheum. 2015;45:229–37.

    Article  PubMed  Google Scholar 

  38. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014;48:193–204.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Beser-Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beser-Robles, M., Sanchis-Alfonso, V., Martí-Bonmatí, L. (2023). Brain Network Functional Connectivity Clinical Relevance and Predictive Diagnostic Models in Anterior Knee Pain Patients. In: Sanchis-Alfonso, V. (eds) Anterior Knee Pain and Patellar Instability. Springer, Cham. https://doi.org/10.1007/978-3-031-09767-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09767-6_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09766-9

  • Online ISBN: 978-3-031-09767-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics