Skip to main content

Biomechanical Analysis of the Influence of Trochlear Dysplasia on Patellar Tracking and Pressure Applied to Cartilage

  • Chapter
  • First Online:
Anterior Knee Pain and Patellar Instability
  • 573 Accesses

Abstract

Trochlear dysplasia is characterized by a shallow trochlear groove providing limited articular constraints to resist lateral forces applied to the patella by the quadriceps muscles and patellar tendon. Trochlear dysplasia is commonly noted for knees being treated for patellar dislocations and is associated with development of patellofemoral osteoarthritis. Of the numerous surgical options available for patellar stabilization, groove-deepening trochleoplasty is the primary approach to directly address trochlear dysplasia. Numerous biomechanical studies have been performed to evaluate the influence of trochlear dysplasia and groove-deepening trochleoplasty on patellar tracking, stability and pressure applied to cartilage. The studies are based on in vitro simulation of knee function, functional imaging of patients and control subjects, and computational simulation of knee function. Functional imaging and computational simulation studies indicate that trochlear dysplasia contributes to lateral patellar maltracking during normal function, particularly with the knee extended. In vitro simulation and computational simulation studies also indicate that trochlear dysplasia compromises patellar stability in response to a direct lateral force applied to the patella. In vitro simulation indicates that trochlear dysplasia does not necessarily increase the pressure applied to patellofemoral cartilage during stable functional activities. In vitro and computational simulation studies have indicated that groove deepening trochleoplasty reduces lateral patellar maltracking and improves stability to reduce the risk of lateral patellar dislocation. Altering the shape of the trochlear groove without a corresponding change to the patella can increase pressure applied to patellofemoral cartilage, however.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Haver A, Mahieu P, Claessens T, Li H, Pattyn C, Verdonk P, et al. A statistical shape model of trochlear dysplasia of the knee. Knee. 2014;21:518–23. https://doi.org/10.1016/j.knee.2013.11.016.

    Article  PubMed  Google Scholar 

  2. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev. 2007;15:39–46. https://doi.org/10.1097/JSA.0b013e31803035ae.

  3. Arendt EA, England K, Agel J, Tompkins MA. An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sport Traumatol Arthrosc. 2017;25:3099–107. https://doi.org/10.1007/s00167-016-4117-y.

    Article  Google Scholar 

  4. Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sport Traumatol Arthrosc. 2014;22:120–7. https://doi.org/10.1007/s00167-012-2321-y.

    Article  CAS  Google Scholar 

  5. Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA. Factors associated with an increased risk of recurrence after a first-time patellar dislocation: a systematic review and meta-analysis. Am J Sports Med. 2020;48:2552–2562. https://doi.org/10.1177/0363546519888467.

  6. Nelitz M, Theile M, Dornacher D, Wölfle J, Reichel H, Lippacher S. Analysis of failed surgery for patellar instability in children with open growth plates. Knee Surg Sport Traumatol Arthrosc. 2012;20:822–8. https://doi.org/10.1007/s00167-011-1599-5.

    Article  Google Scholar 

  7. Hopper GP, Leach WJ, Rooney BP, Walker CR, Blyth MJ. Does degree of trochlear dysplasia and position of femoral tunnel influence outcome after medial patellofemoral ligament reconstruction? Am J Sports Med. 2014;42:716–22. https://doi.org/10.1177/0363546513518413.

    Article  PubMed  Google Scholar 

  8. Feucht MJ, Mehl J, Forkel P, Achtnich A, Schmitt A, Izadpanah K, et al. Failure analysis in patients with patellar redislocation after primary isolated medial patellofemoral ligament reconstruction. Orthop J Sport Med. 2020;8:1–10. https://doi.org/10.1177/2325967120926178.

    Article  Google Scholar 

  9. Stefanik JJ, Roemer FW, Zumwalt AC, Zhu Y, Gross KD, Lynch JA, et al. Association between measures of trochlear morphology and structural features of patellofemoral joint osteoarthritis on MRI: the MOST study. J Orthop Res. 2012;30:1–8. https://doi.org/10.1002/jor.21486.

    Article  PubMed  Google Scholar 

  10. Sanders TL, Pareek A, Johnson NR, Stuart MJ, Dahm DL, Krych AJ. Patellofemoral arthritis after lateral patellar dislocation: a matched population-based analysis. Am J Sports Med. 2017;45:1012–7. https://doi.org/10.1177/0363546516680604.

    Article  PubMed  Google Scholar 

  11. Liu JN, Steinhaus ME, Kalbian IL, Post WR, Green DW, Strickland SM, et al. Patellar instability management: a survey of the international patellofemoral study group. Am J Sports Med. 2018;46:3299–306. https://doi.org/10.1177/0363546517732045.

    Article  PubMed  Google Scholar 

  12. van Sambeeck JDP, van de Groes SAW, Verdonschot N, Hannink G. Trochleoplasty procedures show complication rates similar to other patellar-stabilizing procedures. Knee Surg Sport Traumatol Arthrosc. 2018;26:2841–57. https://doi.org/10.1007/s00167-017-4766-5.

    Article  Google Scholar 

  13. Longo UG, Vincenzo C, Mannering N, Ciuffreda M, Salvatore G, Berton A, et al. Trochleoplasty techniques provide good clinical results in patients with trochlear dysplasia. Knee Surg Sport Traumatol Arthrosc. 2018;26:2640–58. https://doi.org/10.1007/s00167-017-4584-9.

    Article  Google Scholar 

  14. Weber AE, Nathani A, Dines JS, Allen AA, Shubin-Stein BE, Arendt EA, et al. An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Jt Surg Am. 2016;98:417–27. https://doi.org/10.2106/JBJS.O.00354.

    Article  Google Scholar 

  15. Fucentese SF, Schöttle PB, Pfirrmann CWA, Romero J. CT changes after trochleoplasty for symptomatic trochlear dysplasia. Knee Surg Sport Traumatol Arthrosc. 2007;15:168–74. https://doi.org/10.1007/s00167-006-0140-8.

    Article  CAS  Google Scholar 

  16. Nolan JE 3rd, Schottel PC, Endres NK. Trochleoplasty: indications and Technique. Curr Rev Musculoskelet Med. 2018;11:231-240. https://doi.org/10.1007/s12178-018-9478-z.

  17. Rouanet T, Gougeon F, Fayard JM, Rémy F, Migaud H, Pasquier G. Sulcus deepening trochleoplasty for patellofemoral instability: a series of 34 cases after 15 years postoperative follow-up. Orthop Traumatol Surg Res. 2015;101:443–7. https://doi.org/10.1016/j.otsr.2015.01.017.

    Article  CAS  PubMed  Google Scholar 

  18. Amis AA, Oguz C, Bull AMJ, Senavongse W, Dejour D. The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Jt Surg Ser B. 2008;90:864–9. https://doi.org/10.1302/0301-620X.90B7.20447.

    Article  CAS  Google Scholar 

  19. Spang R, Egan J, Hanna P, Lechtig A, Haber D, DeAngelis JP, et al. Comparison of patellofemoral kinematics and stability after medial patellofemoral ligament and medial quadriceps tendon-femoral ligament reconstruction. Am J Sports Med. 2020;48:2252–9. https://doi.org/10.1177/0363546520930703.

    Article  PubMed  Google Scholar 

  20. Van Haver A, De Roo K, De Beule M, Labey L, De Baets P, Dejour D, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43:1354–61. https://doi.org/10.1177/0363546515572143.

    Article  PubMed  Google Scholar 

  21. Vinod A V., Hollenberg AM, Kluczynski MA, Marzo JM. Ability of medial patellofemoral ligament reconstruction to overcome lateral patellar motion in the presence of trochlear flattening: a cadaveric biomechanical study. Am J Sports Med. 2021:1–6. https://doi.org/10.1177/03635465211041087.

  22. Kuroda R, Kambic H, Valdevit A, Andrish J. Distribution of patellofemoral joint pressures after femoral trochlear osteotomy. Knee Surg Sport Traumatol Arthrosc. 2002;10:33–7. https://doi.org/10.1007/s00167-001-0256-9.

    Article  Google Scholar 

  23. Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, et al. Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res. 2011;29:312–7. https://doi.org/10.1002/jor.21253.

    Article  PubMed  Google Scholar 

  24. Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ. Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg Sport Traumatol Arthrosc. 2016;24:3634–41. https://doi.org/10.1007/s00167-016-4216-9.

    Article  Google Scholar 

  25. Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE. Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res. 2013;31:448–57. https://doi.org/10.1002/jor.22256.

    Article  PubMed  Google Scholar 

  26. Conry KT, Cosgarea AJ, Tanaka MJ, Elias JJ. Influence of tibial tuberosity position and trochlear depth on patellar tracking in patellar instability: Variations with Patella Alta. Clin Biomech. 2021;87: 105406. https://doi.org/10.1016/j.clinbiomech.2021.105406.

    Article  Google Scholar 

  27. Biyani R, Elias JJ, Saranathan A, Feng H, Guseila LM, Morscher MA, et al. Anatomical factors influencing patellar tracking in the unstable patellofemoral joint. Knee Surg Sport Traumatol Arthrosc. 2014;22:2334–41. https://doi.org/10.1007/s00167-014-3195-y.

    Article  Google Scholar 

  28. Elias JJ, Soehnlen NT, Guseila LM, Cosgarea AJ. Dynamic tracking influenced by anatomy in patellar instability. Knee. 2016;23:450–5. https://doi.org/10.1016/j.knee.2016.01.021.

    Article  PubMed  Google Scholar 

  29. Powers CM. Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther. 2000;80:965–73. https://doi.org/10.1093/ptj/80.10.965.

    Article  CAS  PubMed  Google Scholar 

  30. Harbaugh CM, Wilson NA, Sheehan FT. Correlating femoral shape with patellar kinematics in patients with patellofemoral pain. J Orthop Res. 2010;28:865–72. https://doi.org/10.1002/jor.21101.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rezvanifar SC, Flesher BL, Jones KC, Elias JJ. Lateral patellar maltracking due to trochlear dysplasia: a computational study. Knee. 2019;26:1234–42. https://doi.org/10.1016/j.knee.2019.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kaiser D, Trummler L, Götschi T, Waibel FWA, Snedeker JG, Fucentese SF. Patellofemoral instability in trochleodysplastic knee joints and the quantitative influence of simulated trochleoplasty—a finite element simulation. Clin Biomech. 2021;81:105216. https://doi.org/10.1016/j.clinbiomech.2020.105216.

    Article  Google Scholar 

  33. Elias JJ, Rezvanifar SC, Koh JL. Groove-deepening trochleoplasty reduces lateral patellar maltracking and increases patellofemoral contact pressures: dynamic simulation. J Orthop Res. 2022;40:1529-37. https://doi.org/10.1002/jor.25181.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Elias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elias, J.J. (2023). Biomechanical Analysis of the Influence of Trochlear Dysplasia on Patellar Tracking and Pressure Applied to Cartilage. In: Sanchis-Alfonso, V. (eds) Anterior Knee Pain and Patellar Instability. Springer, Cham. https://doi.org/10.1007/978-3-031-09767-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09767-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09766-9

  • Online ISBN: 978-3-031-09767-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics