Skip to main content

Finite Element Technology in Evaluating Medial Patellofemoral Ligament Reconstruction

  • Chapter
  • First Online:
Anterior Knee Pain and Patellar Instability

Abstract

Finite element (FE) analysis originated as a method for structural analysis in the British aerospace industry. This methodology made it possible to perform multiple simulations with the computer to avoid numerous experimental tests with the consequent savings in material, equipment and resource consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchis-Alfonso V, Alastruey-López D, Ginovart G, et al. Parametric finite element model of medial patellofemoral ligament reconstruction model development and clinical validation. J Exp Orthop. 2019;6(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanchis-Alfonso V, Ginovart G, Alastruey-López D, et al. Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model. J Clin Med. 2019;8(12):E2093.

    Google Scholar 

  3. Cohen ZA, Mow VC, Henry JH, et al. Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarthritis Cartilage. 2003;11:569–79.

    Article  CAS  PubMed  Google Scholar 

  4. Klets O, Mononen ME, Tanska P, et al. Comparison of different material models of articular cartilage in 3D computational modelling of the knee: data from the Osteoarthritis Initiative (OAI). J Biomech. 2016;49:3891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang NH, Nayeb-Hashemi H, Canavan PK, et al. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J Orthop Res. 2010;28:1539–47.

    Article  PubMed  Google Scholar 

  6. Peña E, del Palomar AP, Calvo B, et al. Computational modelling of diarthrodial joints. Physiological, pathological and post-surgery simulations. Arch Comput Methods Eng. 2007;14:47–91.

    Google Scholar 

  7. Mononen M, Julkunen P, Töyräs J, et al. Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses. Biomech Model Mechanobiol. 2011;10:357–69.

    Article  CAS  PubMed  Google Scholar 

  8. Donahue TLH, Hull M, Rashid MM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng. 2002;124:273–80.

    Article  PubMed  Google Scholar 

  9. Ciccone WJ II, Bratton DR, Weinstein DM, et al. Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2006;88:1071–8.

    Article  PubMed  Google Scholar 

  10. Drez DJr, Edwards TB, Williams CS. Results of medial patellofemoral ligament reconstruction in the treatment of patellar dislocation. Arthroscopy. 2001;17:298–306.

    Google Scholar 

  11. Elias JJ, Cosgarea AJ. Technical errors during medial patellofemoral ligament reconstruction could overload medial patellofemoral cartilage: a computational analysis. Am J Sports Med. 2006;34:1478–85.

    Article  PubMed  Google Scholar 

  12. Sanchis-Alfonso V, Ramirez-Fuentes C, Montesinos-Berry E, et al. Femoral insertion site of the graft used to replace the medial patellofemoral ligament influences the ligament dynamic changes during knee flexion and the clinical outcome. Knee Surg Sports Traumatol Arthrosc. 2017;25:2433–41.

    Article  PubMed  Google Scholar 

  13. Stephen JM, Kaider D, Lumpaopong P, et al. The effect of femoral tunnel position and graft tension on patellar contact mechanics and kinematics after medial patellofemoral ligament reconstruction. Am J Sports Med. 2014;42:364–72.

    Article  PubMed  Google Scholar 

  14. Stephen JM, Kittl C, Williams A, et al. Effect of medial patellofemoral ligament reconstruction method on patellofemoral contact pressures and kinematics. Am J Sports Med. 2016;44:1186–94.

    Article  PubMed  Google Scholar 

  15. Elias JJ, Kelly MJ, Smith KE, et al. Dynamic simulation of the effects of graft fixation errors during medial patellofemoral ligament reconstruction. Orthop J Sports Med. 2016;4(9):2325967116665080.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rood A, Hannink G, Lenting A, et al. Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions. Am J Sports Med. 2015;43:2538–44.

    Article  PubMed  Google Scholar 

  17. Arendt EA. MPFL reconstruction: the adductor sling approach. In: Dejour D, Arendt EA, editors. Patellofemoral Pain, Instability, and Arthritis; In: Zafagnini S. Berlin, Germany: Springer; 2010. p. 175–9.

    Chapter  Google Scholar 

  18. Monllau JC, Masferrer-Pino A, Ginovart G, et al. Clinical and radiological outcomes after a quasi-anatomical reconstruction of medial patellofemoral ligament with gracilis tendon autograft. Knee Surg Sports Traumatol Arthrosc. 2017;25:2453–9.

    Article  PubMed  Google Scholar 

  19. Alm L, Krause M, Mull C, et al. Modified adductor sling technique: a surgical therapy for patellar instability in skeletally immature patients. Knee. 2017;24:1282–8.

    Article  PubMed  Google Scholar 

  20. Lind M, Enderlein D, Nielsen T, et al. Clinical outcome after reconstruction of the medial patellofemoral ligament in paediatric patients with recurrent patella instability. Knee Surg Sports Traumatol Arthrosc. 2016;24:666–761.

    Article  PubMed  Google Scholar 

  21. Marot V, Sanchis-Alfonso V, Perelli S, et al. Isolated reconstruction of medial patellofemoral ligament with an elastic femoral fixation leads to excellent clinical results. Knee Surg Sports Traumatol Arthrosc. 2021;29(3):800–5.

    Article  PubMed  Google Scholar 

  22. Fulkerson JP, Edgar C. Medial quadriceps tendon-femoral ligament: Surgical anatomy and reconstruction echnique to prevent patella instability. Arthrosc Tech. 2013;12:e125–8.

    Article  Google Scholar 

  23. Conlan T, Garth WP Jr, Lemons JE. Evaluation of the medial soft-tissue restraint of the extensor mechanism of the knee. J Bone Joint Surg Am. 1993;75:682–93.

    Article  CAS  PubMed  Google Scholar 

  24. Desio SM, Burks RT, Bachus KN. Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med. 1998;26:59–65.

    Article  CAS  PubMed  Google Scholar 

  25. Hautamaa PV, Fithian DC, Kaufman KR, et al. Medial soft tissue restraints in lateral patellar instability and repair. Clin Orthop Relat Res. 1998;349:174–82.

    Article  Google Scholar 

  26. Segal NA, Anderson DD, Iyer KS. Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res. 2009;27:1562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Servien E, Fritsch B, Lustig S. In vivo positioning analysis of medial patellofemoral ligament reconstruction. Am J Sports Med. 2011;39:134–9.

    Article  PubMed  Google Scholar 

  28. Thaunat M, Erasmus PJ. The favourable anisometry: an original concept for medial patellofemoral ligament reconstruction. Knee. 2007;14:424–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Sanchis-Alfonso .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 153357 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchis-Alfonso, V. et al. (2023). Finite Element Technology in Evaluating Medial Patellofemoral Ligament Reconstruction. In: Sanchis-Alfonso, V. (eds) Anterior Knee Pain and Patellar Instability. Springer, Cham. https://doi.org/10.1007/978-3-031-09767-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09767-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09766-9

  • Online ISBN: 978-3-031-09767-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics