Skip to main content

Patellofemoral Instrumented Stress Testing

  • Chapter
  • First Online:
Anterior Knee Pain and Patellar Instability

Abstract

The evaluation of patellofemoral joint instability is still very subjective and limited by poor reproducibility and reliability. Physical examination tries to estimate the magnitude of joint laxity, but is not able to reproduce the same testing conditions (especially the force applied) or to reliably measure the magnitude of joint laxity (patellar displacement). The Porto Patella Testing Device (PPTD) is a testing device compatible with magnetic resonance imaging or computed tomography that is able to evaluate and measure patellofemoral joint laxity. It provides a valid, reliable, accurate and precise measurement of patellar displacement under applied stress to the patella and thus identify patients with pathological patellofemoral joint laxity. By analyzing the joint laxity and stiffness profile, this instrument-assisted MRI evaluation can identify subclinical cluster groups of patients with patellofemoral instability and thus personalize the treatment to the patient’s individual needs. The use of the PPTD can therefore be very useful in the clinical practice to support diagnostic decisions, customize the therapeutic decision-making and surgical planning, and follow the joint laxity profile outcomes after conservative or surgical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

    Article  CAS  PubMed  Google Scholar 

  2. Ridley TJ, Hinckel BB, Kruckeberg BM, Agel J, Arendt EA. Anatomical patella instability risk factors on MRI show sensitivity without specificity in patients with patellofemoral instability: a systematic review. J ISAKOS. 2016;1:141–52.

    Article  Google Scholar 

  3. Jimenez AE, Levy BJ, Grimm NL, Andelman SM, Cheng C, Hedgecock JP, Cohen A, Pace JL. Relationship between patellar morphology and known anatomic risk factors for patellofemoral instability. Orthop J Sports Med. 2021;9:2325967120988690.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arendt EA, England K, Agel J, Tompkins MA. An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc. 2017;25:3099–107.

    Article  PubMed  Google Scholar 

  5. McCarthy MI, Hinckel BB, Arendt EA, Chambers CC. Putting it all together: evaluating patellar instability risk factors and revisiting the “Menu.” Clin Sports Med. 2022;41:109–21.

    Article  PubMed  Google Scholar 

  6. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30:961–81.

    Article  PubMed  Google Scholar 

  7. Neyret P, Robinson AH, Le Coultre B, Lapra C, Chambat P. Patellar tendon length–the factor in patellar instability? Knee. 2002;9:3–6.

    Article  PubMed  Google Scholar 

  8. Escala JS, Mellado JM, Olona M, Giné J, Saurí A, Neyret P. Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc. 2006;14:264–72.

    Article  PubMed  Google Scholar 

  9. Kaiser P, Schmoelz W, Schoettle P, Zwierzina M, Heinrichs C, Attal R. Increased internal femoral torsion can be regarded as a risk factor for patellar instability-a biomechanical study. Clin Biomech (Bristol, Avon). 2017;47:103–9.

    Article  PubMed  Google Scholar 

  10. Espregueira-Mendes J, Andrade R, Bastos R, Joseph S, Fulkerson JP, Silva LD. Combined soft tissue reconstruction of the medial patellofemoral ligament and medial quadriceps tendon-femoral ligament. Arthrosc Tech. 2019;8:e481-8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hinckel BB, Gobbi RG, Demange MK, Pereira CAM, Pécora JR, Natalino RJM, Miyahira L, Kubota BS, Camanho GL. Medial patellofemoral ligament, medial patellotibial ligament, and medial patellomeniscal ligament: anatomic, histologic, radiographic, and biomechanical study. Arthroscopy. 2017;33:1862–73.

    Article  PubMed  Google Scholar 

  12. Hinckel BB, Gobbi RG, Kaleka CC, Camanho GL, Arendt EA. Medial patellotibial ligament and medial patellomeniscal ligament: anatomy, imaging, biomechanics, and clinical review. Knee Surg Sports Traumatol Arthrosc. 2018;26:685–96.

    Article  PubMed  Google Scholar 

  13. Tanaka MJ, Chahla J, Farr J 2nd, LaPrade RF, Arendt EA, Sanchis-Alfonso V, Post WR, Fulkerson JP. Recognition of evolving medial patellofemoral anatomy provides insight for reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27:2537–50.

    Article  PubMed  Google Scholar 

  14. Mäenpää H, Lehto MU (1997) Patellofemoral osteoarthritis after patellar dislocation. Clin Orthop Relat Res. 156–62.

    Google Scholar 

  15. Elliott CC, Diduch DR. Biomechanics of patellofemoral instability. Op Tech Sports Med. 2001;9:112–21.

    Article  Google Scholar 

  16. Smith TO, Clark A, Neda S, Arendt EA, Post WR, Grelsamer RP, Dejour D, Almqvist KF, Donell ST. The intra- and inter-observer reliability of the physical examination methods used to assess patients with patellofemoral joint instability. Knee. 2012;19:404–10.

    Article  PubMed  Google Scholar 

  17. Smith TO, Davies L, Donell ST. The reliability and validity of assessing medio-lateral patellar position: a systematic review. Man Ther. 2009;14:355–62.

    Article  PubMed  Google Scholar 

  18. Kantaras AT, Selby J, Johnson DL. History and physical examination of the patellofemoral joint with patellar instability. Op Tech Sports Med. 2001;9:129–33.

    Article  Google Scholar 

  19. Leal A, Pereira R, Pereira H, Silva FS, Flores P, Espregueira-Mendes J. Patellofemoral evaluation: do we need an objective kinematic approach? In: The patellofemoral joint. Springer;2014. p. 37–44.

    Google Scholar 

  20. Calderón CA, Andrade R, Bastos R, Valente C, Maestro A, Peña RS, Espregueira-Mendes J. Examination of the patients with patellofemoral symptoms. In: The patellofemoral joint. Springer;2022. p. 27–37.

    Google Scholar 

  21. Mayfield A, Koh JL. Imaging evaluation in the patient with patellofemoral symptoms. In: The patellofemoral joint;2022. p. 39–44.

    Google Scholar 

  22. Tompkins MA, Rohr SR, Agel J, Arendt EA. Anatomic patellar instability risk factors in primary lateral patellar dislocations do not predict injury patterns: an MRI-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26:677–84.

    Article  PubMed  Google Scholar 

  23. Egusa N, Mori R, Uchio Y. Measurement characteristics of a force-displacement curve for chronic patellar instability. Clin J Sport Med. 2010;20:458–63.

    Article  PubMed  Google Scholar 

  24. Fithian DC, Mishra DK, Balen PF, Stone ML, Daniel DM. Instrumented measurement of patellar mobility. Am J Sports Med. 1995;23:607–15.

    Article  CAS  PubMed  Google Scholar 

  25. Joshi RP, Heatley FW. Measurement of coronal plane patellar mobility in normal subjects. Knee Surg Sports Traumatol Arthrosc. 2000;8:40–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kujala UM, Kvist M, Osterman K, Friberg O, Aalto T. Factors predisposing Army conscripts to knee exertion injuries incurred in a physical training program. Clin Orthop Relat Res. 1986;203–12.

    Google Scholar 

  27. Ota S, Nakashima T, Morisaka A, Ida K, Kawamura M. Comparison of patellar mobility in female adults with and without patellofemoral pain. J Orthop Sports Phys Ther. 2008;38:396–402.

    Article  PubMed  Google Scholar 

  28. Reider B, Marshall JL, Warren RF. Clinical characteristics of patellar disorders in young athletes. Am J Sports Med. 1981;9:270–4.

    Article  CAS  PubMed  Google Scholar 

  29. Skalley TC, Terry GC, Teitge RA. The quantitative measurement of normal passive medial and lateral patellar motion limits. Am J Sports Med. 1993;21:728–32.

    Article  CAS  PubMed  Google Scholar 

  30. Teitge RA, Faerber WW, Des Madryl P, Matelic TM. Stress radiographs of the patellofemoral joint. J Bone Joint Surg Am. 1996;78:193–203.

    Article  CAS  PubMed  Google Scholar 

  31. Wong YM, Ng GY. The relationships between the geometrical features of the patellofemoral joint and patellar mobility in able-bodied subjects. Am J Phys Med Rehabil. 2008;87:134–8.

    Article  PubMed  Google Scholar 

  32. Leal A, Andrade R, Flores P, Silva FS, Espregueira-Mendes J, Arendt E. High heterogeneity in in vivo instrumented-assisted patellofemoral joint stress testing: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2019;27:745–57.

    Article  PubMed  Google Scholar 

  33. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10:215–20.

    Article  CAS  PubMed  Google Scholar 

  34. Leal A, Andrade R, Hinckel BB, Tompkins M, Flores P, Silva F, Espregueira-Mendes J, Arendt E. A new device for patellofemoral instrumented stress-testing provides good reliability and validity. Knee Surg Sports Traumatol Arthrosc. 2020;28:389–97.

    Article  PubMed  Google Scholar 

  35. Leal A, Andrade R, Hinckel B, Tompkins M, Bastos R, Flores P, Samuel F, Espregueira-Mendes J, Arendt E. Patients with different patellofemoral disorders display a distinct ligament stiffness pattern under instrumented stress testing. J ISAKOS. 2020;5:74–9.

    Article  Google Scholar 

  36. Leal A, Andrade R, Flores P, Silva FS, Fulkerson J, Neyret P, Arendt E, Espregueira-Mendes J. Unilateral anterior knee pain is associated with increased patellar lateral position after stressed lateral translation. Knee Surg Sports Traumatol Arthrosc. 2020;28:454–62.

    Article  PubMed  Google Scholar 

  37. Hinckel BB, Gobbi RG, Demange MK, Bonadio MB, Pécora JR, Camanho GL. Combined reconstruction of the medial patellofemoral ligament with quadricipital tendon and the medial patellotibial ligament with patellar tendon. Arthrosc Tech. 2016;5:e79-84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Espregueira-Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leal, A., Andrade, R., Valente, C., Gismonti, A., Pereira, R., Espregueira-Mendes, J. (2023). Patellofemoral Instrumented Stress Testing. In: Sanchis-Alfonso, V. (eds) Anterior Knee Pain and Patellar Instability. Springer, Cham. https://doi.org/10.1007/978-3-031-09767-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09767-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09766-9

  • Online ISBN: 978-3-031-09767-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics