Skip to main content

Sparse Recovery of Sound Fields Using Measurements from Moving Microphones

  • Chapter
  • First Online:
Compressed Sensing in Information Processing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 690 Accesses

Abstract

For collecting spatially dense sound-field data over an extended volume, the use of moving microphones is an efficient alternative compared to stationary methods. Samples taken at continuously varying positions encode parameters that describe the particular sound field in the measurement volume. Parameter decoding imposes a deconvolution problem in the time dimension and an interpolation problem in the spatial dimension, which can be both integrated into a system of linear equations. For larger bandwidths, the original multidimensional sampling problem tends to be ill-posed or even underdetermined unless an excessive number of samples are provided. In such cases, sparse recovery is the key. This chapter recapitulates ideas and strategies of a recently developed framework that exploits sparsity and inherent structure of the sound-field spectrum, in order to obtain qualified parameter estimates according to the compressed-sensing paradigm. The framework is based on a sound-field representation by notional grid points in space, and dynamic samples are interpreted as the result of bandlimited interpolation on that grid using sampled sinc-function approximations. This procedure leads to a highly structured sensing matrix that allows us to accomplish tasks such as recovery, coherence analysis, and trajectory optimization at low computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abolghasemi, V., Ferdowsi, S., Sanei, S.: A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 92, 999–1009 (2012)

    Article  Google Scholar 

  2. Ajdler, T., Sbaiz, L., Vetterli, M.: The plenacoustic function and its sampling. IEEE Trans. Signal Process. 54(10), 3790–3804 (2006)

    Article  MATH  Google Scholar 

  3. Antonello, N., Sena, E.D., Moonen, M., Naylor, P.A., van Waterschoot, T.: Room impulse response interpolation using a sparse spatio-temporal representation of the sound field. IEEE/ACM Trans. Audio Speech Lang. Process. 25(10), 1929–1941 (2017)

    Article  Google Scholar 

  4. Benichoux, A., Simon, L., Vincent, E., Gribonval, R.: Convex regularizations for the simultaneous recording of room impulse responses. IEEE Trans. Signal Process. 62(8), 1976–1986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5-6), 629–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blumensath, T., Davies, M.: Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Topics Signal Process. 4(2), 298–309 (2010)

    Article  Google Scholar 

  8. Cai, T., Xu, G., Zhang, J.: On recovery of sparse signals via 1 minimization. IEEE Trans. Inf. Theory 55(7), 3388–3397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caiafa, C., Cichocki, A.: Computing sparse representations of multidimensional signals using Kronecker bases. Neural Comput. 25(1), 186–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E., Tao, T.: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35(6), 2313–2351 (2007)

    Google Scholar 

  12. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cecchi, S., Carini, A., Spors, S.: Room response equalization – a review. Appl. Sci. 8(1) (2018)

    Google Scholar 

  14. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davenport, M., Duarte, M., Eldar, Y., Kutyniok, G.: Introduction to compressed sensing. In: Y. Eldar, G. Kutyniok (eds.) Compressed Sensing - Theory and Applications, pp. 1–64. Cambridge University Press, New York (2012)

    Google Scholar 

  16. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci., 2197–2202 (2003)

    Google Scholar 

  17. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte, M., Baraniuk, R.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2), 494–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Epain, N., Jin, C., van Schaik, A.: The application of compressive sampling to the analysis and synthesis of spatial sound fields. In: 127th Conv. Audio Eng. Soc. (2009)

    Google Scholar 

  21. Fernandez-Grande, E., Xenaki, A.: Compressive sensing with a spherical microphone array. J. Acoust. Soc. Am. 139(2), EL45–EL49 (2016)

    Article  Google Scholar 

  22. Hänsler, E., Schmidt, G. (eds.): Topics in Acoustic Echo and Noise Control - Selected Methods for the Cancellation of Acoustical Echoes, the Reduction of Background Noise, and Speech Processing. Signals and Communication Technology. Springer Science (2006)

    Google Scholar 

  23. Herman, M., Strohmer, T.: General deviants: An analysis of perturbations in compressed sensing. IEEE J. Sel. Topics Signal Process. 4(2), 342–349 (2010)

    Article  Google Scholar 

  24. Jokar, S., Mehrmann, V.: Sparse solutions to underdetermined Kronecker product systems. Linear Algebra Appl. 431, 2437–2447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Katzberg, F., Mazur, R., Maass, M., Koch, P., Mertins, A.: Sound-field measurement with moving microphones. J. Acoust. Soc. Am. 141(5), 3220–3235 (2017)

    Article  Google Scholar 

  26. Katzberg, F., Mazur, R., Maass, M., Koch, P., Mertins, A.: A compressed sensing framework for dynamic sound-field measurements. IEEE/ACM Trans. Audio Speech Lang. Process. 26(11), 1962–1975 (2018)

    Article  Google Scholar 

  27. Katzberg, F., Maass, M., Mertins, A.: Coherence based trajectory optimization for compressive sensing of sound fields. In: Europ. Signal Process. Conf. (2021)

    Google Scholar 

  28. Katzberg, F., Maass, M., Mertins, A.: Spherical harmonic representation for dynamic sound-field measurements. In: IEEE Int. Conf. Acoust. Speech, Signal Process. (2021)

    Google Scholar 

  29. Lu, C., Li, H., Lin, Z.: Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151, 45–55 (2018)

    Article  Google Scholar 

  30. Masiero, B., Pollow, M.: A review of the compressive sampling framework in the lights of spherical harmonics: Applications to distributed spherical arrays. In: 2nd Int. Symposium on Ambisonics and Spherical Acoustics (2010)

    Google Scholar 

  31. Mignot, R., Daudet, L., Ollivier, F.: Room reverberation reconstruction: interpolation of the early part using compressed sensing. IEEE/ACM Trans. Audio Speech Lang. Process. 21(11), 2301–2312 (2013)

    Article  Google Scholar 

  32. Mignot, R., Chardon, G., Daudet, L.: Low frequency interpolation of room impulse responses using compressed sensing. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 205–216 (2014)

    Article  Google Scholar 

  33. Moreau, S., Daniel, J., Bertet, S.: 3D sound field recording with higher order ambisonics - objective measurements and validation of a 4th order spherical microphone. In: 120th Conv. Audio Eng. Soc. (2006)

    Google Scholar 

  34. Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nocedal, J., Wright, J.: Numerical Optimization, 2nd edn. Springer (2006)

    Google Scholar 

  37. Obermeier, R., Martinez-Lorenzo, J.: Sensing matrix design via mutual coherence minimization for electromagnetic compressive imaging applications. IEEE Trans. Comput. Imag. 3(2), 217–229 (2017)

    Article  MathSciNet  Google Scholar 

  38. Pan, J., Qiu, Y.: An orthogonal method for measurement matrix optimization. Circuits Syst. Signal Process. 35, 837–849 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rafaely, B.: Analysis and design of spherical microphone arrays. IEEE Trans. Speech Audio Process. 12(1), 135–143 (2005)

    Article  Google Scholar 

  40. Rafaely, B.: Fundamentals of Spherical Array Processing. Springer (2015)

    Google Scholar 

  41. Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rauhut, H.: Compressive sensing and structured random matrices. In: M. Fornasier (ed.) Theoretical foundations and numerical methods for sparse recovery, Radon Series Comp. Appl. Math. 9, pp. 1–94. de Gruyter, Berlin (2010)

    Google Scholar 

  43. Rife, D., Vanderkooy, J.: Transfer-function measurement with maximum-length sequences. J. Audio Eng. Soc. 37(6), 419–444 (1989)

    Google Scholar 

  44. Spors, S., Rabenstein, R., Ahrens, J.: The theory of wave field synthesis revisited. In: 124th Conv. Audio Eng. Soc. (2008)

    Google Scholar 

  45. Takida, Y., Koyama, S., Saruwatari, H.: Exterior and interior sound field separation using convex optimization: Comparison of signal models. In: Europ. Signal Process. Conf. (2018)

    Google Scholar 

  46. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Välimäki, V., Laakso, T.: Principles of fractional delay filters. In: IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 3870–3873 (2000)

    Google Scholar 

  50. Wabnitz, A., Epain, N., van Schaik, A., Jin, C.: Time domain reconstruction of spatial sound fields using compressed sensing. In: IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 465–468 (2011)

    Google Scholar 

  51. Wang, Y., Chen, K.: Compressive sensing based spherical harmonics decomposition of a low frequency sound field within a cylindrical cavity. J. Acoust. Soc. Am. 141(1), 1812–1823 (2017)

    Article  Google Scholar 

  52. Zea, E.: Compressed sensing of impulse responses in rooms of unknown properties and contents. J. Sound Vib. 459 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Mertins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katzberg, F., Mertins, A. (2022). Sparse Recovery of Sound Fields Using Measurements from Moving Microphones. In: Kutyniok, G., Rauhut, H., Kunsch, R.J. (eds) Compressed Sensing in Information Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-09745-4_15

Download citation

Publish with us

Policies and ethics