Abstract
For collecting spatially dense sound-field data over an extended volume, the use of moving microphones is an efficient alternative compared to stationary methods. Samples taken at continuously varying positions encode parameters that describe the particular sound field in the measurement volume. Parameter decoding imposes a deconvolution problem in the time dimension and an interpolation problem in the spatial dimension, which can be both integrated into a system of linear equations. For larger bandwidths, the original multidimensional sampling problem tends to be ill-posed or even underdetermined unless an excessive number of samples are provided. In such cases, sparse recovery is the key. This chapter recapitulates ideas and strategies of a recently developed framework that exploits sparsity and inherent structure of the sound-field spectrum, in order to obtain qualified parameter estimates according to the compressed-sensing paradigm. The framework is based on a sound-field representation by notional grid points in space, and dynamic samples are interpreted as the result of bandlimited interpolation on that grid using sampled sinc-function approximations. This procedure leads to a highly structured sensing matrix that allows us to accomplish tasks such as recovery, coherence analysis, and trajectory optimization at low computational effort.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abolghasemi, V., Ferdowsi, S., Sanei, S.: A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 92, 999–1009 (2012)
Ajdler, T., Sbaiz, L., Vetterli, M.: The plenacoustic function and its sampling. IEEE Trans. Signal Process. 54(10), 3790–3804 (2006)
Antonello, N., Sena, E.D., Moonen, M., Naylor, P.A., van Waterschoot, T.: Room impulse response interpolation using a sparse spatio-temporal representation of the sound field. IEEE/ACM Trans. Audio Speech Lang. Process. 25(10), 1929–1941 (2017)
Benichoux, A., Simon, L., Vincent, E., Gribonval, R.: Convex regularizations for the simultaneous recording of room impulse responses. IEEE Trans. Signal Process. 62(8), 1976–1986 (2014)
Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5-6), 629–654 (2008)
Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)
Blumensath, T., Davies, M.: Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Topics Signal Process. 4(2), 298–309 (2010)
Cai, T., Xu, G., Zhang, J.: On recovery of sparse signals via ℓ 1 minimization. IEEE Trans. Inf. Theory 55(7), 3388–3397 (2009)
Caiafa, C., Cichocki, A.: Computing sparse representations of multidimensional signals using Kronecker bases. Neural Comput. 25(1), 186–220 (2012)
Candès, E.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9), 589–592 (2008)
Candès, E., Tao, T.: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35(6), 2313–2351 (2007)
Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Cecchi, S., Carini, A., Spors, S.: Room response equalization – a review. Appl. Sci. 8(1) (2018)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)
Davenport, M., Duarte, M., Eldar, Y., Kutyniok, G.: Introduction to compressed sensing. In: Y. Eldar, G. Kutyniok (eds.) Compressed Sensing - Theory and Applications, pp. 1–64. Cambridge University Press, New York (2012)
Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization. Proc. Natl. Acad. Sci., 2197–2202 (2003)
Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)
Duarte, M., Baraniuk, R.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2), 494–504 (2012)
Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)
Epain, N., Jin, C., van Schaik, A.: The application of compressive sampling to the analysis and synthesis of spatial sound fields. In: 127th Conv. Audio Eng. Soc. (2009)
Fernandez-Grande, E., Xenaki, A.: Compressive sensing with a spherical microphone array. J. Acoust. Soc. Am. 139(2), EL45–EL49 (2016)
Hänsler, E., Schmidt, G. (eds.): Topics in Acoustic Echo and Noise Control - Selected Methods for the Cancellation of Acoustical Echoes, the Reduction of Background Noise, and Speech Processing. Signals and Communication Technology. Springer Science (2006)
Herman, M., Strohmer, T.: General deviants: An analysis of perturbations in compressed sensing. IEEE J. Sel. Topics Signal Process. 4(2), 342–349 (2010)
Jokar, S., Mehrmann, V.: Sparse solutions to underdetermined Kronecker product systems. Linear Algebra Appl. 431, 2437–2447 (2009)
Katzberg, F., Mazur, R., Maass, M., Koch, P., Mertins, A.: Sound-field measurement with moving microphones. J. Acoust. Soc. Am. 141(5), 3220–3235 (2017)
Katzberg, F., Mazur, R., Maass, M., Koch, P., Mertins, A.: A compressed sensing framework for dynamic sound-field measurements. IEEE/ACM Trans. Audio Speech Lang. Process. 26(11), 1962–1975 (2018)
Katzberg, F., Maass, M., Mertins, A.: Coherence based trajectory optimization for compressive sensing of sound fields. In: Europ. Signal Process. Conf. (2021)
Katzberg, F., Maass, M., Mertins, A.: Spherical harmonic representation for dynamic sound-field measurements. In: IEEE Int. Conf. Acoust. Speech, Signal Process. (2021)
Lu, C., Li, H., Lin, Z.: Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151, 45–55 (2018)
Masiero, B., Pollow, M.: A review of the compressive sampling framework in the lights of spherical harmonics: Applications to distributed spherical arrays. In: 2nd Int. Symposium on Ambisonics and Spherical Acoustics (2010)
Mignot, R., Daudet, L., Ollivier, F.: Room reverberation reconstruction: interpolation of the early part using compressed sensing. IEEE/ACM Trans. Audio Speech Lang. Process. 21(11), 2301–2312 (2013)
Mignot, R., Chardon, G., Daudet, L.: Low frequency interpolation of room impulse responses using compressed sensing. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 205–216 (2014)
Moreau, S., Daniel, J., Bertet, S.: 3D sound field recording with higher order ambisonics - objective measurements and validation of a 4th order spherical microphone. In: 120th Conv. Audio Eng. Soc. (2006)
Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008)
Nocedal, J., Wright, J.: Numerical Optimization, 2nd edn. Springer (2006)
Obermeier, R., Martinez-Lorenzo, J.: Sensing matrix design via mutual coherence minimization for electromagnetic compressive imaging applications. IEEE Trans. Comput. Imag. 3(2), 217–229 (2017)
Pan, J., Qiu, Y.: An orthogonal method for measurement matrix optimization. Circuits Syst. Signal Process. 35, 837–849 (2015)
Rafaely, B.: Analysis and design of spherical microphone arrays. IEEE Trans. Speech Audio Process. 12(1), 135–143 (2005)
Rafaely, B.: Fundamentals of Spherical Array Processing. Springer (2015)
Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)
Rauhut, H.: Compressive sensing and structured random matrices. In: M. Fornasier (ed.) Theoretical foundations and numerical methods for sparse recovery, Radon Series Comp. Appl. Math. 9, pp. 1–94. de Gruyter, Berlin (2010)
Rife, D., Vanderkooy, J.: Transfer-function measurement with maximum-length sequences. J. Audio Eng. Soc. 37(6), 419–444 (1989)
Spors, S., Rabenstein, R., Ahrens, J.: The theory of wave field synthesis revisited. In: 124th Conv. Audio Eng. Soc. (2008)
Takida, Y., Koyama, S., Saruwatari, H.: Exterior and interior sound field separation using convex optimization: Comparison of signal models. In: Europ. Signal Process. Conf. (2018)
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58(1), 267–288 (1996)
Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2013)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Välimäki, V., Laakso, T.: Principles of fractional delay filters. In: IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 3870–3873 (2000)
Wabnitz, A., Epain, N., van Schaik, A., Jin, C.: Time domain reconstruction of spatial sound fields using compressed sensing. In: IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 465–468 (2011)
Wang, Y., Chen, K.: Compressive sensing based spherical harmonics decomposition of a low frequency sound field within a cylindrical cavity. J. Acoust. Soc. Am. 141(1), 1812–1823 (2017)
Zea, E.: Compressed sensing of impulse responses in rooms of unknown properties and contents. J. Sound Vib. 459 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Katzberg, F., Mertins, A. (2022). Sparse Recovery of Sound Fields Using Measurements from Moving Microphones. In: Kutyniok, G., Rauhut, H., Kunsch, R.J. (eds) Compressed Sensing in Information Processing. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-09745-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-09745-4_15
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-031-09744-7
Online ISBN: 978-3-031-09745-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)