Skip to main content

Self-organizing Mobile Robots Swarm Movement Control Simulation

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13345))

Included in the following conference series:

Abstract

The control principle of mobile robots, self-organized in convoy structure, is considered. It is shown that in this case a high autonomy of swarm operation may be achieved, due to such parameters of motion, as swarm azimuth angle and velocity of movement may be set only for the master robot, while slave robots follow master one at the pre-determined distance. The flowchart of the swarm control system is worked out, according which all slave robots measure their own deviation from the direction on previous swarm unit and distance till it, and actuate mechanics of the robot for zeroing azimuth angles difference and setting pre-determined distance. Mathematical models of the swarm, as the united object under control, and of the distributed Von Neumann controller, which closes control system, are worked out. It is shown, that characteristic equation of closed system have complex exponent at the left side, which is due to time delays, born by Von Neumann type controllers. Method of evaluation of time delays, based on semi-Markov simulation of control algorithm, is proposed. Theoretical results are confirmed by modeling the motion control of a convoy, including pair mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzafestas, S.G.: Introduction to Mobile Robot Control, p. 750. Elsevier (2014)

    Google Scholar 

  2. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1

    Book  MATH  Google Scholar 

  3. Godwin, M.F., Spry, S.C., Hedrick, J.K.: A Distributed System for Collaboration and Control of UAV Groups: Experiments and Analysis. Center for the Collaborative Control of Unmanned Vehicles University of California, Berkeley, p. 224 (2007)

    Google Scholar 

  4. Leng, Y., Yu, C., Zhang, W., Zhang, Y., He, X., Zhou, W.: Hierarchical self-organization for task-oriented swarm robotics. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140, pp. 543–550. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20466-6_57

    Chapter  Google Scholar 

  5. Yu, C.Y., Wu, M.H., He, X.S.: Wehicle swarm motion coordination through independent local-reactive agents. In: Wu, Y. (ed.) Advanced Materials Research, vol. 108–111, pp. 619–624 (2010)

    Google Scholar 

  6. Morcom, J.: Optical distance measurement. US Patent No. 6753950. US CI. 356/4.01. Int. CI. G01S 17/00; G01C 3/08 (2004)

    Google Scholar 

  7. Bosch, T.: Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40(1), 10 (2001). https://doi.org/10.1117/1.1330700

    Article  Google Scholar 

  8. Gan, L., Zhang, H.: Optical circumferential scanning azimuth measurement method. In: IOP Conference Series. Materials Science and Engineering, vol. 428, p. 012013 (2018). https://doi.org/10.1088/1757-899X/428/1/012013

  9. Landau, I.D., Zito, G.: Digital Control Systems, Design, Identification, p. 484. Springer, Heidelberg (2006)

    Google Scholar 

  10. Aström, J., Wittenmark, B.: Computer Controlled Systems: Theory and Design, p. 557. Tsinghua University Press, Prentice Hall (2002)

    Google Scholar 

  11. Fadali, M.S., Visioli, A.: Digital Control Engineering: Analysis and Design, pp. 239–272. Elsevier Inc. (2013)

    Google Scholar 

  12. Chen, I.-M., Yang, G., Huat, S.: Automatic modeling for modular reconfigurable robotic system: theory and practice. In: Cubero, S. (ed.) Yeo Industrial Robotics: Theory, Modelling and Control, pp. 43–82. IntechOpen (2006)

    Google Scholar 

  13. Yeh, Y.-C., Chu, Y., Chiou, C.W.: Improving the sampling resolution of periodic signals by using controlled sampling interval method. Comput. Electr. Eng. 40(4), 1064–1071 (2014)

    Article  Google Scholar 

  14. Pavlov, A.V.: About the equality of the transform of Laplace to the transform of Fourier. Issues Anal. 23(1), 21–30 (2016). https://doi.org/10.15393/j3.art.2016.3211

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Farquharson, C.G., Hu, X.: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses. Geophysics 81(2), E75–E90 (2015)

    Article  Google Scholar 

  16. Arnold, K.A.: Timing analysis in embedded systems. In: Ganssler, J., Arnold, K., et al. (eds.) Embedded Hardware, pp. 239–272. Elsevier Inc. (2008)

    Google Scholar 

  17. Larkin, E.V., Ivutin, A.N.: Estimation of latency in embedded real-time systems. In: 3rd Meditteranean Conference on Embedded Computing (MECO 2014), pp. 236–239 (2014)

    Google Scholar 

  18. Fridman, E., Shaked, U.: A descriptor system approach to H control of linear time-delay systems. IEEE Trans. Autom. Control 47(2), 253–270 (2002)

    Article  MathSciNet  Google Scholar 

  19. Zhang, X.M., Min, W.U., Yong, H.E.: Delay dependent robust control for linear systems with multiple time-varying delays and uncertainties. Control Decis. 19(5), 496–500 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Janssen, J., Manca, R.: Applied Semi-Markov Processes, p. 310. Springer, Cham (2006)

    MATH  Google Scholar 

  21. Jiang, Q., Xi, H.-S., Yin, B.-Q.: Event-driven semi-Markov switching state-space control processes. IET Control Theory Appl. 6(12), 1861–1869 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kobayashi, H., Marl, B.L., Turin, W.: Probability, Random Processes and Statistical Analysis. Cambridge University Press, p. 812 (2012)

    Google Scholar 

  23. Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)

    MathSciNet  Google Scholar 

  24. Li, D., Chen, G.: Impulses-induced p-exponential input-to-state stability for a class of stochastic delayed partial differential equations. Int. J. Control 92(8), 1805–1814 (2019)

    Article  MathSciNet  Google Scholar 

  25. Hamann, A., Racu, R., Ernst, R.: Multi-dimensional robustness optimization in heterogeneous distributed embedded systems. In: Proceedings of the 13th IEEE Real Time and Embedded Technology and Applications Symposium, RTAS 2007, pp. 269–280. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Larkin , T. A. Akimenko or A. V. Bogomolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larkin, E.V., Akimenko, T.A., Bogomolov, A.V. (2022). Self-organizing Mobile Robots Swarm Movement Control Simulation. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2022. Lecture Notes in Computer Science, vol 13345. Springer, Cham. https://doi.org/10.1007/978-3-031-09726-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09726-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09725-6

  • Online ISBN: 978-3-031-09726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics