Skip to main content

Combined Application of Subsurface Drainage and Fertilization, a Method to Reduce the Effects of Iron and Sulfide Toxicities in Irrigated Rice Fields in Burkina Faso

  • Chapter
  • First Online:
Food Security and Safety Volume 2

Abstract

Iron and sulfide toxicities are among the main abiotic stresses that disturb rice productivity in irrigated rice fields in West Africa. Many lowlands are affected and several are deserted due to the constraints. Iron and sulfide toxicities occur when high quantities of ferrous iron and sulfide are mobilized from adjacent slopes and/or are produced in the rice paddy flooded soils by Iron-Reducing Bacteria (IRB) and Sulfate-Reducing Bacteria (SRB) through the reduction of ferric and sulfate ions in anaerobic conditions. Excessive uptake of iron II and sulfide results in increased polyphenol oxidase activity, inducing the production of phytotoxic oxygen radicals and yields decreases. To reduce the phenomenon in affected paddy soils, many studies regarding water management, fertilization, and rice varieties selection studies were conducted during the last decades. However, the constraints remain up today. Based on the literature available and experimental research conducted, the present writing would like to contribute to reduce the constraints by proposing a suitable method of integrated utilization of subsurface drainage, fertilization mode, and rice varieties selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtnich C et al (1995a) Role of interspecies H, transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol Ecol 16:61–70

    Article  CAS  Google Scholar 

  • Achtnich C, Bak F, Conrad R (1995b) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72

    Article  CAS  Google Scholar 

  • ADRAO (2002) Toxicité ferreuse dans les bas-fonds: la rouille du riz. Bouaké, Côte d’Ivoire

    Google Scholar 

  • ADRAO (2006) Toxicité ferreuse dans les systèmes à base riz d’Afrique de l’ouest. Cotonou, Bénin

    Google Scholar 

  • Allam AI, Hollis JP (1972) Sulfide inhibition of oxidases in rice roots. Phytopathology 62:634–639

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96(4):625–638. https://doi.org/10.1093/aob/mci215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audebert A (2006) Diagnostic du risque et approches de gestion de la toxicité ferreuse dans les bas-fonds rizicoles. In: Audebert A et al (eds) Toxicité ferreuse dans les systémes à base riz d’Afrique de l’ouest Zone hydromophe Bas-fonds, pp 6–17

    Google Scholar 

  • Audebert A, Sahrawat KL (2000) Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr 23(11–12):1877–1885. https://doi.org/10.1080/01904160009382150

    Article  CAS  Google Scholar 

  • Aung MS, Masuda H (2020) How does rice defend against excess iron? Physiol Mol Mech 11(August):1–8. https://doi.org/10.3389/fpls.2020.01102

    Article  Google Scholar 

  • Baba I (1958) Methods of diagnosing Akiochi, iron and hydrogen sulphide toxicity in the wet zone rice fields in Ceylon. Trop Agric 114:231–236

    CAS  Google Scholar 

  • Balasubramanian V et al (2007) Increasing rice production in sub-Saharan Africa challenges and opportunities. Adv Agron 94:55–133

    Article  CAS  Google Scholar 

  • Barry ML et al (2019) Effect of silica on rice agromorphological diversity under iron toxicity conditions in lowland rice of Guinea Conakry. Eur Sci J 15(3):118–130. https://doi.org/10.19044/esj.2019.v15n3p118

    Article  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice – conditions and management concepts. J Plant Nutr Soil Sci 168(4):558–573. https://doi.org/10.1002/jpln.200520504

    Article  CAS  Google Scholar 

  • Becker M et al (2020) Silicon reduces the iron uptake in rice and induces iron homeostasis related genes. Sci Rep:2–11. https://doi.org/10.1038/s41598-020-61718-4

  • Bongoua-Devisme A (2009) Implications des communautés bactériennes ferri-réductrices et des paramètres environnementaux dans le fonctionnement et la qualité des sols de rizières (Thaïlande et Côte d’Ivoire). Henri Poincare University, Nancy

    Google Scholar 

  • Bongou-Devisme A et al (2014) Structure and activity of Fe(III)-reducing microorganism occurring in paddy fields of Thailand. Int J Sci 3:7–17

    Google Scholar 

  • Bousserrhine N et al (1999) Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-and Al-substituted goethites. Geomicrobiol J 16:245–258

    Article  CAS  Google Scholar 

  • Briat JF, Ravet K, Arnaud N (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    Article  CAS  PubMed  Google Scholar 

  • Chérif M et al (2009) Evaluation of iron toxicity on lowland irrigated rice in West Africa. Tropicultura 27(2):88–92

    Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63. https://doi.org/10.1016/s0065-2113(07)96005-8

    Article  CAS  Google Scholar 

  • Coonrad R, Frenzel P (2002) Flooded soils. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1316–1333

    Google Scholar 

  • Dianou D, Traoré SA (1996) Effets du chromate, du molybdate et du métronidazole sur l’activité des bactéries sulfato-réductrices : incidences sur la production de Oryza sativa var. indica. Ann Univ Bénin Sér Sci XII:85–106

    Google Scholar 

  • Dianou D, Traoré SA (2000) Sulfate-reducing bacterial populations in some lowland paddy field soils of Burkina Faso(West Africa). Microbes Environ 15:41–44

    Article  Google Scholar 

  • Dianou D, Traoré SA (2004) Interactions entre les bactéries sulfato-réductrices et les archaeobactéries méthanogènes dans quelques sols de bas-fond au Burkina Faso : influences sur la production du riz. Ann Univ Ouaga Sér C 2:1–21

    Google Scholar 

  • Dianou D et al (1998) Characterization of Desulfovibrio sp. isolated from some lowland paddy field soils of Burkina Faso. Soil Sci Plant Nutr 44(August 2014):459–465. https://doi.org/10.1080/00380768.1998.10414468

    Article  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice: nutrient disorders & nutrient management. Handbook series. Available at: http://books.google.com/books?id=V-kJxfFhkaUC&pgis=1

  • Ebrahiminezhad A et al (2017) Iron-reducing bacteria and iron nanostructures. J Adv Med Sci Appl Technol 3(1):9–16

    Article  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New York

    Book  Google Scholar 

  • Engel K, Asch F, Becker M (2012) Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. J Plant Nutr Soil Sci 175(6):871–881. https://doi.org/10.1002/jpln.201100421

    Article  CAS  Google Scholar 

  • Engelbrektson A et al (2014) Inhibition of microbial sulfate reduction in a flow-through column system by (per) chlorate treatment. Front Microbiol 5:1–11. https://doi.org/10.3389/fmicb.2014.00315

    Article  Google Scholar 

  • Erbs M, Spain J (2002) Microbial iron metabolism in natural environments. Microbial Divers:1–19

    Google Scholar 

  • Ethan S, Odunze S (2011) Effect of water management and nitrogen rates on iron concentration and yield in lowland rice. Agric Biol J N Am 2(4):622–629. https://doi.org/10.5251/abjna.2011.2.4.622.629

    Article  Google Scholar 

  • Fageria NK et al (2008) Iron toxicity in lowland rice. J Plant Nutr 31(9):1676–1697. https://doi.org/10.1080/01904160802244902

    Article  CAS  Google Scholar 

  • Fernández SA et al (2010) Bacterial community analysis of the water surface layer from a rice-planted and an unplanted flooded field. Braz J Microbiol 41:411–419

    Article  Google Scholar 

  • Freney JR, Jacq VA, Baldensperger JF (1982) The significance of the biological sulphur cycle in rice ptoduction. In: Dommergues YR, Diem MG (eds) Microbiology of tropical soils and plant productivity. Nishoff De. Martinus, pp 271–317

    Chapter  Google Scholar 

  • Fuller DC, Suruda AJ (2000) Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994. J Occup Environ Med 42:939–942

    Article  CAS  PubMed  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of metanogenic Archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Gridley HE et al (2006) Breeding for tolerance to iron toxicity at WARDA. In: Audebert A, Narteh LT, Kiepe P, Millar D, Beks B (eds) Iron toxicity in rice- based system in West Africa. WARDA, Cotonou, pp 96–111

    Google Scholar 

  • Haefele SM, Nelson A, Hijmans RJ (2014) Soil quality and constraints in global rice production. Geoderma 235:250–259. https://doi.org/10.1016/j.geoderma.2014.07.019

    Article  CAS  Google Scholar 

  • Hammann R, Ottow JCG (1974) Reductive dissolution of Fe2O3 by Saccharolytic Clostridia and Bascillus polymyxa under anoxic conditions. Z Pflanzenern 137:108–115

    Article  CAS  Google Scholar 

  • Hollis JP et al (1975) Sulfde disease of rice on iron excess soils. Acta Phytopathol Sci Hung 10:329–341

    CAS  Google Scholar 

  • Hori T, Müller A et al (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4(2):267–278. https://doi.org/10.1038/ismej.2009.100

    Article  CAS  PubMed  Google Scholar 

  • Inada F (1965a) Bronzing desease of rice plant in Ceylon. I. Effect of field treatments on bronzing occurence and changes in leaf respiration induced by the desease. Nippon Sakumotsu Gakkai Kiji 33:309–314

    CAS  Google Scholar 

  • Inada F (1965b) Bronzing desease of rice plant in Ceylon. II. Cause of the occurence of bronzing. Nippon Sakumotsu Gakkai Kiji 33:315–323

    CAS  Google Scholar 

  • IRRI (2002) Standard evaluation system for rice. International Rice Research Institute, Manila

    Google Scholar 

  • Ito T et al (2002) Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl Environ Microbiol 68(1):356–364. https://doi.org/10.1128/AEM.68.1.356-364.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacq VA (1973) Biological sulfate-reduction in the spermosphere and the rhizosphere of rice in some sulfate-soils of Senegal. In: Int. symp. acid sulfate soils. I.L.R.I, Wageningen, The Nelerlands

    Google Scholar 

  • Jacq VA (1975) La sulfato-réduction en relation avec l’excrétion racinaire. Soc Bot Fr Coll Rhizosphère 22:169–181

    Article  Google Scholar 

  • Jacq VA (1980) Biological sulfur cycle in paddy fields populations of microorganisms (sulfate and sulfur reducing bacteria, sulfooxidizers) in the the spermosphere and rhizosphere of rice, and resulting accumulation of toxic sulfides. In: II. Int. symp. microbiol. ecology. Un. V. Warnick, Coventry (G.B.)

    Google Scholar 

  • Jacq VA (1989) Participation des bactéries sulfato-réductrices aux processus microbiens de certaines maladies physiologiques du riz inondé (exemple du Sénégal). Université de Provence Aix-Marseille I

    Google Scholar 

  • Jacq VA, Prade K (1984) Document de synthese concernant l’ etude des effets nocifs des bacteries reductrices des cycles biologiques du soufre et du fer vis-a-vis du riz inonde au, senegal Au Senegal

    Google Scholar 

  • Jacq V, Roger P (1977) Diminution des fontes de semis dues à la sulfato-réduction par un prétraitement des graines de riz avec des cyanophycées. Cah ORSTOM Sér Biol 12:101–107

    Google Scholar 

  • Jacq VA, Prade K, Ottow JCG (1991) Iron sulphide accumulation in the rhizosphere of wetland rice (Oryza sativa L.) as the result of microbial activities. Dev Geochem 6:453–468. Available at: http://www.sciencedirect.com/science/article/pii/B9780444889003500497

    CAS  Google Scholar 

  • Jorgensen BB (1982) Mineralization of organic-matter in the sea bed: the role of sulfate reduction. Nature 296:643–645. https://doi.org/10.1038/296643a0

    Article  Google Scholar 

  • Jose R, Fett JP (2014) Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theor Exp Plant Physiol:135–146. https://doi.org/10.1007/s40626-014-0013-3

  • Keïta A (2015) Subsurface drainage of valley bottom irrigated rice schemes in tropical Savannah: case studies of Tiefora and Moussodougou in Burkina Faso. Wageningen University, Delft

    Google Scholar 

  • Kosaki T, Juo ASR (1986) Iron toxicity in inland valleys: a case study from Nigeria. In: Juo ASR, Lowe JA (eds) Wetlands and rice in Sub-Saharan Africa Ibadan. IITA, Ibadan, pp 167–174

    Google Scholar 

  • Kosegarten H, Hoffmann B, Rroco E (2004) Apoplastic pH and Fe-III reduction in young sunflower (Helianthus annuus) roots. Physiol Plant 122:95–106

    Article  CAS  Google Scholar 

  • Lewis S et al (2005) Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers. Scand J Gastroenterol 40(11):1296–1303

    Article  CAS  PubMed  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24(5):625–645. https://doi.org/10.1111/j.1574-6976.2000.tb00563.x

    Article  CAS  PubMed  Google Scholar 

  • Limin KJ, Aideen OH, Jeffery PB (1998) Inhibition of sulfate reduction to sulfide by 9,10-anthraquinone in in vitro ruminal fermentations. J Dairy Sci 81(8):2251–2256

    Article  Google Scholar 

  • Lin M, You C (1989) Root exudates of rice (Oryza sativa L.) and its interaction with Alcaligenes faecalis. Sci Agric Sin 22:6–12

    CAS  Google Scholar 

  • Liu XZ et al (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41(4):687–694. https://doi.org/10.1016/j.soilbio.2009.01.001

    Article  CAS  Google Scholar 

  • Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45(1):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR et al (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53

    Article  CAS  Google Scholar 

  • Loyer JY, Jacq VA, Reynaud PA (1982) Variations physico-chimiques dans un sol de rizière inondée et évolution de la biomasse algale et des populations microbiennes du cycle du soufre. Cah ORSTOM Sér Biol 45:53–72

    Google Scholar 

  • Luef B et al (2013) Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. Int Soc Microbial Ecol 7(2):338–350. https://doi.org/10.1038/ismej.2012.103

    Article  CAS  Google Scholar 

  • Majerus V, Bertin P, Lutts S (2007) Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima steud.) seedlings exposed to short term iron toxicity. Plant Soil 324:253–265

    Article  Google Scholar 

  • Monteiro HP, Winterbourn CC (1988) The superoxide- dependent transfer of iron from ferritin to transferrin. Biochem J 256:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey J, Guerinot ML (2010) Iron uptake and transport in plants: the good, the bad, and the ionome. Chemi Rev 109(10):4553–4567. https://doi.org/10.1021/cr900112r.Iron

    Article  Google Scholar 

  • Munch JC, Ottow JCG (1983) Reductive transformation mechanism of ferric oxide in hydromorphic soils. Environ Biogeochem 35:383–394

    CAS  Google Scholar 

  • Na GN, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72(1):18–25

    Article  CAS  Google Scholar 

  • Olaleye AO et al (2009) Elemental composition of two rice cultivars under potentially toxic on aquept and aquent. Notulae Sci Biol 1(1):46–49

    Article  CAS  Google Scholar 

  • Onaga G, Edema R, Asea G (2013) Tolerance of rice germplasm to iron toxicity stress and the relationship between tolerance, Fe2+, P and K content in the leaves and roots. Arch Agron Soil Sci 59(2):213–229. https://doi.org/10.1080/03650340.2011.622751

    Article  CAS  Google Scholar 

  • Onyango DA et al (2019) Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Funct Plant Biol 46:93–105

    Article  CAS  Google Scholar 

  • Ota Y (1968) Occurence of the physiological disorder of rice called “bronzing”. Bull Natl Inst Agric Sci Tokyo D18:97–104

    Google Scholar 

  • Otoidobiga CH, Keita A, Yacouba H, Traore A (2015a) Dynamics and activity of iron-reducing bacterial populations in a West African rice paddy soil under subsurface drainage: case study of Kamboinse in Burkina Faso. Agric Sci 6(August):860–869

    Google Scholar 

  • Otoidobiga CH, Keita A, Yacouba H, Traore AS et al (2015b) Dynamics and activity of sulfate-reducing bacterial populations in paddy soil under subsurface drainage: case study of Kamboinse in Burkina Faso. Agric Sci 6:1393–1403. https://doi.org/10.4236/as.2015.611135

    Article  Google Scholar 

  • Otoidobiga CH, Kam H et al (2016a) Effect of combined application of subsurface drainage and mineral fertilization on iron-reducing bacterial populations’ developments and Fe2+ uptake by two rice varieties in an iron toxic paddy soil of Burkina Faso (West Africa). Agric Sci 7:783–804. https://doi.org/10.4236/as.2016.711072

    Article  CAS  Google Scholar 

  • Otoidobiga CH, Sawadogo A et al (2016b) Effect of fertilization on the dynamics and activity of Iron-Reducing bacterial populations in a West African rice paddy soil planted with two rice varieties: case study of Kou Valley in Burkina Faso. J Environ Prot 7:1119–1131

    Article  CAS  Google Scholar 

  • Ouattara AS, Jacq VA (1992) Characterization of sulfate-reducing bacteria isolated from Senegal ricefields. FEMS Microbiol Lett 101(3):217–228. https://doi.org/10.1111/j.1574-6968.1992.tb05778.x

    Article  CAS  Google Scholar 

  • Panda BB et al (2012) Iron stress induces primary and secondary micronutrient stresses in high yielding tropical rice. J Plant Nutr 35(9):1359–1373. https://doi.org/10.1080/01904167.2012.684128

    Article  CAS  Google Scholar 

  • Park YD, Tanaka A (1968) Studies of the rice plant on an “akiochi” soil in korea. Soil Sci Plant Nutr 14:27–34

    Article  Google Scholar 

  • Pati S et al (2016) Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plant Anal 47(3):284–290. https://doi.org/10.1080/00103624.2015.1122797

    Article  CAS  Google Scholar 

  • Patrick JWH, Reddy CN (1978) Chemical changes in rice soils. The International Rice Research Institute, Manila, pp 361–379

    Google Scholar 

  • Peterson DA (1991) Enhanced electron transfer by unsaturated fatty acids and superoxide dismutase. Free Radic Res Commun 12(13):161–166

    Article  PubMed  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1981) Some aspects of the physical chemistry of paddy soils. In: Sinica A (ed) Symposium on paddy soil. Science Press-Springer, Beijing, pp 59–94

    Chapter  Google Scholar 

  • Ponnamperuma FN, Bradfield R, Peech M (1955) Physiological disease of rice attributable to iron toxicity. Nature 175(4449):265–265. https://doi.org/10.1038/175265a0

    Article  CAS  Google Scholar 

  • Posgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Prade K, Ottow JCG, Jacq VA (1993) Excessive iron uptake (iron toxicity) by wetland rice (Oryza Sativa L.) on an acid sulphate soil in the Casamance/Senegal. International Institute for Land Reclamation and Improvement (ILRI), Wageningen

    Google Scholar 

  • Quinet M et al (2012) Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35(10):1837–1859. https://doi.org/10.1111/j.1365-3040.2012.02521.x

    Article  CAS  PubMed  Google Scholar 

  • Ratering S, Schnell S (2000) Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48:341–365

    Article  CAS  Google Scholar 

  • Rodriguez AA et al (2006) Effects of cyanobacterial extracelular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger P, Le Mer J, Joulian C (1999) L’émission et la consommation de méthane par les sols: mécanismes, bilan, contrôle. Université de Provence, AIX-Marseille 1 E.S.G.B.M.A - E.S.I.L. Luminy 6:193–210

    Google Scholar 

  • Sahrawat K (2003) Iron toxicity in wetland rice: occurrence and management through integration of genetic tolerance with plant nutrition. J Ind Soc Soil Sci 51(4):409–417

    CAS  Google Scholar 

  • Sahrawat KL (2010) Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition. Plant Stress 4(2):70–75. https://doi.org/10.1038/175265a0

    Article  Google Scholar 

  • Sahrawat KL, Diatta S (1996) Nutrient management and season affect soil iron toxicity

    Google Scholar 

  • Saleh AM, Mac Pherson R, Miller JDA (1964) The effect of inhibitors on sulphate reducing bacteria: a compilation. J Appl Bacteriol 27(2):281–293

    Article  CAS  Google Scholar 

  • Scheid D, Stubner S, Conrad R (2004) Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiol Ecol 50:101–110. https://doi.org/10.1016/j.femsec.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  • Shahid M et al (2014) Mitigation of iron toxicity and iron, zinc, and manganese nutrition of wetland rice cultivars (Oryza sativa L.) grown in iron-toxic soil. Clean Soil Air Water 42:1604–1609. https://doi.org/10.1002/clen.201300178

    Article  CAS  Google Scholar 

  • Shu Y, Chung R (2006) Rice growth and nutrient accumulation as affected by different composts. Commun Soil Sci Plant Anal 37(7–8):1139–1156. https://doi.org/10.1080/00103620600588470

    Article  CAS  Google Scholar 

  • Sikirou M et al (2015) Genetic improvement of iron toxicity tolerance in rice-progress, challenges and prospects in West Africa. Plant Prod Sci 18(4):423–434. https://doi.org/10.1626/pps.18.423

    Article  CAS  Google Scholar 

  • Singh BP et al (1992) Characteristics of Fe-toxic soils and affected plants and their correction in acid Haplaquents of Meghalaya. Int Rice Res Newsl 17:18–19

    Google Scholar 

  • Somado E a, Guei RG, Keya SO (2008) NERICA: the new rice for Africa – a compendium, vol 210. WARDA

    Google Scholar 

  • Straub KL et al (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubner S, Meuser K (2000) Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol Ecol 34:73–80

    Article  CAS  PubMed  Google Scholar 

  • Takijima Y (1965) Studies on the mechanism of root damage of rice plant in the peat paddy fields. II. Status of root in the rhizosphere and the occurence of root damage. Soil Sci Plant Nutr 11:204–211

    Article  Google Scholar 

  • Tanaka A, Mulleriyawa RP, Gasu T (1968) Possibility of hydrogen sulfide induced iron toxicity to the rice plant. Soil Sci Plant Nutr 14:1–6

    Article  CAS  Google Scholar 

  • Taylor P, Fageria NK (2014) Yield and yield components and phosphorus use efficiency of lowland. J Plant Nutr 37(August):979–989. https://doi.org/10.1080/01904167.2014.888735

    Article  CAS  Google Scholar 

  • Thongbai P, Goodman BA (2000) Free radical generation and post-anoxic injury in rice grown in an iron-toxic soil. In: Ninth international symposium on iron nutrition and interactions in plants, Stuttgart, Germany, pp 1887–1900

    Google Scholar 

  • Trolldenier G (1977) Mineral nutrition and reduction processes in the rhizosphere of rice. Plant Soil 47(1):193–202

    Article  CAS  Google Scholar 

  • Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 123–142

    Google Scholar 

  • Waite DW et al (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol:5972–6016. https://doi.org/10.1099/ijsem.0.004213

  • Wamishe Y et al (2018) A method to estimate field response to hydrogen sulfide toxicity and autumn decline in rice cultivars. J Soil Sci Plant Health 2(2):1–5

    Google Scholar 

  • Weiss JV, Emerson D, Megonigal PJ (2005) Rhizosphere iron (III) deposition and reduction in a Juncus effusus L.-dominated wetland. Soil Sci Soc Am J 69:1872–1880

    Article  Google Scholar 

  • Widdel F (1992) The genus Desulfomaculum. In: Balows A, Trüper HG et al (eds) The Prokaryotes. Springer, New York, pp 1792–1799

    Google Scholar 

  • Wind T, Stubner S, Conrad R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22(2):269–279. https://doi.org/10.1016/S0723-2020(99)80074-5

    Article  CAS  PubMed  Google Scholar 

  • Wu L et al (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7(8):1–12. https://doi.org/10.1186/s12284-014-0008-3

    Article  Google Scholar 

  • Wunder LC et al (2021) Iron and sulfate reduction structure microbial communities in ( sub-) Antarctic sediments. ISME J:3587–3604. https://doi.org/10.1038/s41396-021-01014-9

  • Yamauchi M, Peng XX (1993) Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil 149:227–234

    Article  Google Scholar 

  • Yi W, Wang B, Qu D (2012) Diversity of isolates performing Fe(III) reduction from paddy soil fed by different organic carbon sources. Afr J Biotechnol 11(19):4407–4417. https://doi.org/10.5897/AJB11.1216

    Article  CAS  Google Scholar 

  • Zhang C et al (1999) Iron reduction by psychrotrophic enrichment cultures. FEMS Microbiol Ecol 30:367–371

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed with the financial support of Organization for Women in Science for the Developing World (OWSD), L’Oreal Foundation for Women in Science (FWIS), and International Foundation for Science (IFS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otoidobiga, C.H., Sawadogo, A., Wonni, I., Asakawa, S., Traore, A., Dianou, D. (2023). Combined Application of Subsurface Drainage and Fertilization, a Method to Reduce the Effects of Iron and Sulfide Toxicities in Irrigated Rice Fields in Burkina Faso. In: Babalola, O.O., Ayangbenro, A.S., Ojuederie, O.B. (eds) Food Security and Safety Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-031-09614-3_7

Download citation

Publish with us

Policies and ethics