Skip to main content

Abelian Repetition Threshold Revisited

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13296))

Included in the following conference series:

Abstract

In combinatorics on words, repetition thresholds are the numbers separating avoidable and unavoidable repetitions of a given type in a given class of words. For example, the meaning of the “classical” repetition threshold \(\mathsf{RT}(k)\) is “every infinite k-ary word contains an \(\alpha \)-power of a nonempty word for some \(\alpha \ge \mathsf{RT}(k)\) but some infinite k-ary words contain no such \(\alpha \)-powers with \(\alpha > \mathsf{RT}(k)\)”. It is well known that \(\mathsf{RT}(k)=\frac{k}{k-1}\) with the exceptions for \(k=3,4\).

For Abelian repetition threshold \(\mathsf{ART}(k)\), avoidance of fractional Abelian powers of words is considered. The exact values of \(\mathsf{ART}(k)\) are unknown; the lower bound \(\mathsf{ART}(2)\ge \frac{11}{3}\), \(\mathsf{ART}(3)\ge 2\), \(\mathsf{ART}(4)\ge \frac{9}{5}\), \(\mathsf{ART}(k)\ge \frac{k-2}{k-3}\) for all \(k\ge 5\) was proved by Samsonov and Shur in 2012 and conjectured to be tight. We present a method of study of Abelian power-free languages using random walks in prefix trees and some experimental results obtained by this method. On the base of these results, we suggest that the lower bounds for \(\mathsf{ART}(k)\) by Samsonov and Shur are not tight for all k except \(k= 5\). We prove \(\mathsf{ART}(k)>\frac{k-2}{k-3}\) for \(k=6,7,8,9,10\) and state a new conjecture on the Abelian repetition threshold.

E. A. Petrova—Supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2020-0016.

A. M. Shur—Supported by Ural Mathematical Center, project 075-02-2022-877.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carpi, A.: On Dejean’s conjecture over large alphabets. Theoret. Comput. Sci. 385, 137–151 (1999)

    Article  MathSciNet  Google Scholar 

  2. Cassaigne, J., Currie, J.D.: Words strongly avoiding fractional powers. Eur. J. Comb. 20(8), 725–737 (1999)

    Article  MathSciNet  Google Scholar 

  3. Currie, J.D., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comp. 80, 1063–1070 (2011)

    Article  MathSciNet  Google Scholar 

  4. Currie, J.D., Mol, L.: The undirected repetition threshold and undirected pattern avoidance. Theor. Comput. Sci. 866, 56–69 (2021)

    Article  MathSciNet  Google Scholar 

  5. Currie, J.D., Mol, L., Rampersad, N.: Circular repetition thresholds on some small alphabets: last cases of Gorbunova’s conjecture. Electron. J. Comb. 26(2), P2.31 (2019)

    Google Scholar 

  6. Currie, J.D., Mol, L., Rampersad, N.: The number of threshold words on \(n\) letters grows exponentially for every \(n \ge 27\). J. Integer Seq. 23(3), 20.3.1 (2020)

    Google Scholar 

  7. Currie, J.D., Mol, L., Rampersad, N.: The repetition threshold for binary rich words. Discret. Math. Theor. Comput. Sci. 22(1) (2020)

    Google Scholar 

  8. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory. Ser. A 13, 90–99 (1972)

    Article  MathSciNet  Google Scholar 

  9. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory. Ser. A 27, 181–185 (1979)

    Article  MathSciNet  Google Scholar 

  10. Dolce, F., Dvořáková, L., Pelantová, E.: Computation of critical exponent in balanced sequences. In: Lecroq, T., Puzynina, S. (eds.) WORDS 2021. LNCS, vol. 12847, pp. 78–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85088-3_7

    Chapter  MATH  Google Scholar 

  11. Erdős, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 221–264 (1961)

    Google Scholar 

  12. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of symbols. Soviet Math. Dokl. 9, 536–539 (1968)

    MATH  Google Scholar 

  13. Gorbunova, I.A.: Repetition threshold for circular words. Electron. J. Comb. 19(4), P11 (2012)

    Article  MathSciNet  Google Scholar 

  14. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_62

    Chapter  Google Scholar 

  15. Moulin-Ollagnier, J.: Proof of Dejean’s conjecture for alphabets with \(5,6,7,8,9,10\) and \(11\) letters. Theoret. Comput. Sci. 95, 187–205 (1992)

    Article  MathSciNet  Google Scholar 

  16. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les mots. Discr. Appl. Math. 7, 297–311 (1984)

    Google Scholar 

  17. Petrova, E.A., Shur, A.M.: Branching frequency and Markov entropy of repetition-free languages. In: Moreira, N., Reis, R. (eds.) DLT 2021. LNCS, vol. 12811, pp. 328–341. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81508-0_27

    Chapter  Google Scholar 

  18. Radoszewski, J., Rytter, W., Straszynski, J., Walen, T., Zuba, W.: Hardness of detecting abelian and additive square factors in strings. CoRR abs/2107.09206 (2021)

    Google Scholar 

  19. Rampersad, N., Shallit, J.O., Vandomme, É.: Critical exponents of infinite balanced words. Theoret. Comput. Sci. 777, 454–463 (2019)

    Article  MathSciNet  Google Scholar 

  20. Rao, M.: Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412, 3010–3018 (2011)

    Article  MathSciNet  Google Scholar 

  21. Samsonov, A.V., Shur, A.M.: On Abelian repetition threshold. RAIRO Theor. Inf. Appl. 46, 147–163 (2012)

    Article  MathSciNet  Google Scholar 

  22. Shallit, J.O., Shur, A.M.: Subword complexity and power avoidance. Theoret. Comput. Sci. 792, 96–116 (2019)

    Article  MathSciNet  Google Scholar 

  23. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7, 1–22 (1906)

    Google Scholar 

  24. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912)

    Google Scholar 

  25. Tunev, I.N., Shur, A.M.: On two stronger versions of Dejean’s conjecture. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 800–812. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_69

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arseny M. Shur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrova, E.A., Shur, A.M. (2022). Abelian Repetition Threshold Revisited. In: Kulikov, A.S., Raskhodnikova, S. (eds) Computer Science – Theory and Applications. CSR 2022. Lecture Notes in Computer Science, vol 13296. Springer, Cham. https://doi.org/10.1007/978-3-031-09574-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09574-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09573-3

  • Online ISBN: 978-3-031-09574-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics