Skip to main content

Water Waves in Isotropic and Anisotropic Media: A comparison

  • Chapter
  • First Online:
The Mathematics of Marine Modelling

Part of the book series: Mathematics of Planet Earth ((MPE,volume 9))

  • 468 Accesses

Abstract

Restoring forces as gravity, Coriolis force or their combination, endow geo and astrophysical fluids with an anisotropy direction. Breaking the underlying hydrostatic or cyclostrophic force balances in fluids that are stratified in density or angular momentum results in obliquely-propagating internal waves. These waves differ in nearly every conceivable aspect from external, surface gravity and capillary waves. Differences between linear internal and external waves stem to a large part from the complementary way in which their frequency depends on the wave vector. While these differences may be hiding in symmetrically-shaped basins, these become fully apparent when the boundary shape breaks the symmetry imposed by the anisotropy. These underlying force balances also constrain any wave-driven mean flows. Interestingly, the lack of a clear force balance in a homogeneous, non-rotating fluid that is stratified in linear momentum, renders waves, perturbations on these shear flows, ‘problematic’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berry, M.V. 1981. Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard’. European Journal of Physics 2: 91.

    Google Scholar 

  • Bewley, G.P., D.P. Lathrop, L.R.M. Maas, and K.R. Sreenivasan. 2007. Inertial waves in rotating grid turbulence. Physics of Fluids 19 (7): 071701.

    Article  MATH  Google Scholar 

  • Boury, S., I. Sibgatullin, E. Ermanyuk, N. Shmakova, P. Odier, S. Joubaud, L.R.M. Maas and T. Dauxois. 2021. Vortex cluster arising from an axisymmetric inertial wave attractor. Journal of Fluid Mechanics, 926 (A12).

    Google Scholar 

  • Bretherton, F.P. 1964. Low frequency oscillations trapped near the equator. Tellus 16 (2): 181–185.

    Article  Google Scholar 

  • Brouzet, C., I.N. Sibgatullin, E.V. Ermanyuk, S. Joubaud, and T. Dauxois. 2007. Scale effects in internal wave attractors. Physical Review Fluids 2 (11): 114803.

    Article  Google Scholar 

  • Brunet, M., T. Dauxois, and P.-P. Cortet. 2019. Linear and nonlinear regimes of an inertial wave attractor. Physical Review Fluids 4 (3): 034801.

    Article  Google Scholar 

  • Burnside, W. 1888. On the small wave-motions of a heterogeneous fluid under gravity. Proceedings of the London Mathematical Society 1 (1): 392–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Carpenter, J.R., E.W. Tedford, E. Heifetz, and G.A. Lawrence. 2011. Instability in stratified shear flow: Review of a physical interpretation based on interacting waves. Applied Mechanics Reviews 64 (6): 060801.

    Article  Google Scholar 

  • Cederlöf, U. 1988. Free-surface effects on spin-up. Journal of Fluid Mechanics 187: 395–407.

    Article  MATH  Google Scholar 

  • Darrigol, O. 2005. Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.

    Google Scholar 

  • Dauxois, T., S. Joubaud, P. Odier, and A. Venaille. 2018. Instabilities of internal gravity wave beams. Annual Review of Fluid Mechanics 50: 131–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Delplace, P., J.B. Marston, and A. Venaille. 2017. Topological origin of equatorial waves. Science 358 (6366): 1075–1077.

    Article  MathSciNet  MATH  Google Scholar 

  • Dintrans, B., M. Rieutord, and L. Valdettaro. 1999. Gravito-inertial waves in a rotating stratified sphere or spherical shell. Journal of Fluid Mechanics 398: 271–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Drazin, P.G., and L.N. Howard. 1962. The instability to long waves of unbounded parallel inviscid flow. Journal of Fluid Mechanics 14 (2): 257–283.

    Article  MathSciNet  MATH  Google Scholar 

  • Drazin, P.G., and W.H. Reid. 1998. Hydrodynamic stability. Cambridge University Press.

    Google Scholar 

  • Ekman, V.W. 1904. On dead water. Norwegian North Polar expedition 1893–1896, scientific results, 5 (15): 1–152.

    Google Scholar 

  • Fjeldstad, J.E. 1933. Interne wellen. Geofysiske Publikasjoner 10 (6): 1–35.

    Google Scholar 

  • Franklin, B. 1762. Relating a curious instance of the effect of oil on water. Complete Works, London 2: 142, 1762.

    Google Scholar 

  • Gerkema, T., J.T.F. Zimmerman, L.R.M. Maas, and H. Van Haren. 2008. Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Reviews of Geophysics 46(2).

    Google Scholar 

  • Gill, A.E. 1982. Atmosphere-ocean dynamics. Ac Press.

    Google Scholar 

  • Goedbloed, H., R. Keppens, and S. Poedts. 2019. Magnetohydrodynamics of laboratory and astrophysical plasmas. Cambridge University press.

    Google Scholar 

  • Greenspan, H.P., and L.N. Howard. 1963. On a time-dependent motion of a rotating fluid. Journal of Fluid Mechanics 17 (3): 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Grimshaw, R., E. Pelinovsky, and T. Talipova. 2010. Nonreflecting internal wave beam propagation in the deep ocean. Journal of Physical Oceanography 40 (4): 802–813.

    Article  Google Scholar 

  • Groen, P. 1948. Contribution to the theory of internal waves. KNMI, Mededelingen en verhandelingen; Serie B, Deel II, No. I.

    Google Scholar 

  • Hazewinkel, J., P. van Breevoort, S.B. Dalziel, and L.R.M. Maas. 2008. Observations on the wavenumber spectrum and evolution of an internal wave attractor. Journal of Fluid Mechanics 598: 373–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Hazewinkel, J., L.R.M. Maas & S.B. Dalziel (2010a). Attractive internal wave patterns. arXiv:1010.1046 [physics.flu-dyn].

  • Hazewinkel, J., Chr. Tsimitri, L.R.M. Maas, and S.B. Dalziel. 2010. Observations on the robustness of internal wave attractors to perturbations. Physics of Fluids 22 (10): 107102.

    Google Scholar 

  • Heller, E.J. 1984. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits. Physical Review Letters 53 (16): 1515–1518.

    Article  MathSciNet  Google Scholar 

  • Hinwood, J.B. 1972. The study of density-stratified flows up to 1945 part 2 internal waves and interfacial effects. La Houille Blanche 8 (709–722): 1972.

    Google Scholar 

  • Hof, B., C.W.H. van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, and F. Waleffe. 2004. Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690): 1594–1598.

    Article  Google Scholar 

  • Hoff, M., U. Harlander, and C. Egbers. 2016. Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. Journal of Fluid Mechanics 789: 589–616.

    Google Scholar 

  • Hoff, M., U. Harlander, and S.A. Triana. 2016. Study of turbulence and interacting inertial modes in a differentially rotating spherical shell experiment. Physical Review Fluids 1 (4): 043701.

    Article  Google Scholar 

  • Israeli, M. 1972. On trapped modes of rotating fluids in spherical shells. Studies in Applied Mathematics 51 (3): 219–237.

    Article  MATH  Google Scholar 

  • John, F. 1941. The dirichlet problem for a hyperbolic equation. American Journal of Mathematics 63 (1): 141–154.

    Google Scholar 

  • Kelvin, Lord. 1880. On the oscillations of a columnar vortex. Philosophical Magazine 10: 155–168.

    Google Scholar 

  • Klein, M., T. Seelig, M.V. Kurgansky, A. Ghasemi, I.D. Borcia, A. Will, E. Schaller, Chr. Egbers, and U. Harlander. 2014. Inertial wave excitation and focusing in a liquid bounded by a frustum and a cylinder. Journal of Fluid Mechanics 751: 255–297.

    Google Scholar 

  • Koch, S., U. Harlander, Chr. Egbers, and R. Hollerbach. 2013. Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dynamics Research 45 (3): 035504.

    Google Scholar 

  • Krauss, W. 1973. Dynamics of the homogeneous and the quasihomogeneous ocean, vol. 1. Borntraeger.

    Google Scholar 

  • Lamriben, C., P.-P. Cortet, F. Moisy, and L.R.M. Maas. 2011. Excitation of inertial modes in a closed grid turbulence experiment under rotation. Physics of Fluids 23 (1): 015102.

    Article  Google Scholar 

  • Le Bars, M., D. Cébron, and P. Le Gal. 2015. Flows driven by libration, precession, and tides. Annual Review of Fluid Mechanics 47: 163–193.

    Article  MathSciNet  Google Scholar 

  • Li, L., M.D. Patterson, K. Zhang, and R.R. Kerswell. 2012. Spin-up and spin-down in a half cone: A pathological situation or not? Physics of Fluids 24 (11): 116601.

    Article  MATH  Google Scholar 

  • Love, A.E.H. 1890. Wave-motion in a heterogeneous heavy fluid. Proceedings of the London Mathematical Society 1 (1): 307–316.

    Article  MATH  Google Scholar 

  • Maas, L.R.M. 2001. Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. Journal of Fluid Mechanics 437: 13–28.

    Article  MATH  Google Scholar 

  • Maas, L.R.M. 2003. On the amphidromic structure of inertial waves in a rectangular parallelepiped. Fluid Dynamics Research 33 (4): 373–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Maas, L.M.R. 2005. Wave attractors: Linear yet nonlinear. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 15(9): 2757–2782.

    Google Scholar 

  • Maas, L.R.M. 2007. Experiments on rotating flows: Impact of rotation on flow through tilted rectangular ducts. In St. Petersburg Conference “Fluxes and Structures in Fluids”, Ed. Yu. Chashechkin, 1–10.

    Google Scholar 

  • Maas, L.R.M. 2009. Exact analytic self-similar solution of a wave attractor field. Physica D 238 (5): 502–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Maas, L.R.M., and U. Harlander. 2007. Equatorial wave attractors and inertial oscillations. Journal of Fluid Mechanics 570: 47–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Maas, L.R.M., and F.P.A. Lam. 1995. Geometric focusing of internal waves. Journal of Fluid Mechanics 300: 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Manders, A.M.M., and L.R.M. Maas. 2003. Observations of inertial waves in a rectangular basin with one sloping boundary. Journal of Fluid Mechanics 493: 59–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Manders, A.M.M., and L.R.M. Maas. 2004. On the three-dimensional structure of the inertial wave field in a rectangular basin with one sloping boundary. Fluid Dynamics Research 35 (1): 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Manders, A.M.M., J.J. Duistermaat, and L.R.M. Maas. 2003. Wave attractors in a smooth convex enclosed geometry. Physica D 186 (3–4): 109–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Nansen, F. 1902. The oceanography of the north polar basin. The Norwegian North Polar Expedition 1893–1896. Scientific Results 3(9).

    Google Scholar 

  • Ogilvie, G.I. 2005. Wave attractors and the asymptotic dissipation rate of tidal disturbances. Journal of Fluid Mechanics 543: 19–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Oruba, L., A.M. Soward, and E. Dormy. 2017. Spin-down in a rapidly rotating cylinder container with mixed rigid and stress-free boundary conditions. Journal of Fluid Mechanics 818: 205–240.

    Google Scholar 

  • Phillips, O.M. 1963. Energy transfer in rotating fluids by reflection of inertial waves. Physics of Fluids 6 (4): 513–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Pillet, G., E.V. Ermanyuk, L.R.M. Maas, I.N. Sibgatullin, and T. Dauxois. 2018. Internal wave attractors in three-dimensional geometries: Trapping by oblique reflection. Journal of Fluid Mechanics 845: 203–225.

    Article  Google Scholar 

  • Pillet, G., L.R.M. Maas, and T. Dauxois. 2019. Internal wave attractors in 3d geometries: A dynamical systems approach. European Journal of Mechanics - B/Fluids 77: 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Proudman, J. 1916. On the dynamical theory of tides. Part II. Flat seas. Proceedings of the London Mathematical Society, 2nd Series 18: 21–50.

    Google Scholar 

  • Rabitti, A., and L.R.M. Maas. 2013. Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell. Journal of Fluid Mechanics 729: 445–470.

    Article  MATH  Google Scholar 

  • Rao, D.B. 1966. Free gravitational oscillations in rotating rectangular basins. Journal of Fluid Mechanics 25 (03): 523–555.

    Article  Google Scholar 

  • Rayleigh, Lord. 1879. On the stability, or instability, of certain fluid motions. Proceedings of the London Mathematical Society 1 (1): 57–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh, Lord. 1883. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society 14: 170–177.

    MathSciNet  MATH  Google Scholar 

  • Rayleigh, Lord. 1917. On the dynamics of revolving fluids. Proceedings of the Royal Society A 93 (648): 148–154.

    MATH  Google Scholar 

  • Rhines, P.B., and W.R. Young. 1982. Homogenization of potential vorticity in planetary gyres. Journal of Fluid Mechanics 122: 347–367.

    Article  MATH  Google Scholar 

  • Rieutord, M. 2001. Ekman layers and the damping of inertial r -modes in a spherical shell: application to neutron stars. Astrophysical Journal 550 (1): 443–447.

    Article  Google Scholar 

  • Rieutord, M., and L. Valdettaro. 1997. Inertial waves in a rotating spherical shell. Journal of Fluid Mechanics 341: 77–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Rieutord, M., B. Georgeot, and L. Valdettaro. 2001. Inertial waves in a rotating spherical shell: Attractors and asymptotic spectrum. Journal of Fluid Mechanics 435: 103–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Sibgatullin, I.N., and E.V. Ermanyuk. 2019. Internal and inertial wave attractors: A review. Journal of Applied Mechanics and Technical Physics 60 (2): 284–302.

    Article  MathSciNet  Google Scholar 

  • Sibgatullin, I.N., E. Ermanyuk, L.R.M. Maas, X. Xu, and T. Dauxois. 2017. Direct numerical simulation of three-dimensional inertial wave attractors. In 2017 Ivannikov ISPRAS Open Conference (ISPRAS), pp 137–143.

    Google Scholar 

  • Squire, H.B. 1933. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proceedings of the Royal Society A 142 (847): 621–628.

    MATH  Google Scholar 

  • Steinmoeller, D.T., M. Stastna, and K.G. Lamb. 2019. Calculating basin-scale free oscillations in lakes on a rotating earth. Ocean Modelling 139: 101403.

    Article  Google Scholar 

  • Stern, M.E. 1963. Trapping of low frequency oscillations in an equatorial “boundary layer’’. Tellus 15 (3): 246–250.

    Article  Google Scholar 

  • Stewartson, K. 1971. On trapped oscillations of a rotating fluid in a thin spherical shell. Tellus 23 (6): 506–510.

    Article  Google Scholar 

  • Stokes, G.G. 1847. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society 8: 441.

    Google Scholar 

  • Sun, J., C.J. Nappo, L. Mahrt, D. Belušić, B. Grisogono, D.R. Stauffer, M. Pulido, C. Staquet, Q. Jiang, A. Pouquet, et al. 2015. Review of wave-turbulence interactions in the stable atmospheric boundary layer. Reviews of Geophysics 53 (3): 956–993.

    Article  Google Scholar 

  • Sverdrup, H.U. 1926. Dynamics of tides on the northern Siberian shelf. Geophysics Publication 4 (5): 76.

    Google Scholar 

  • Taylor, G.I. 1922. Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society 2 (1): 148.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Heijst, G.J.F. 1989. Spin-up phenomena in non-axisymmetric containers. Journal of Fluid Mechanics 206: 171–191.

    Article  Google Scholar 

  • Van Heijst, G.J.F., P.A. Davies, and R.G. Davis. 1990. Spin-up in a rectangular container. Physics of Fluids 2 (2): 150–159.

    Article  Google Scholar 

  • Van Heijst, G.J.F., L.R.M. Maas, and C.W.M. Williams. 1994. The spin-up of fluid in a rectangular container with sloping bottom. Journal of Fluid Mechanics 265: 125–159.

    Article  Google Scholar 

  • Vogt, T., D. Räbiger, and S. Eckert. 2014. Inertial wave dynamics in a rotating liquid metal. Journal of Fluid Mechanics 753: 472–498.

    Article  Google Scholar 

  • Waleffe, F. 1997. On a self-sustaining process in shear flows. Physics of Fluids 9 (4): 883–900.

    Article  Google Scholar 

  • Weidman, P.D. 1976. On the spin-up and spin-down of a rotating fluid. part 1. extending the Wedemeyer model. Journal of Fluid Mechanics 77(4): 685–708.

    Google Scholar 

  • Whewell, W. 1833. Essay towards a first approximation to a map of cotidal lines. Philosophical Transactions of the Royal Society of London 147–236.

    Google Scholar 

  • Wu, K., B.D. Welfert, and J.M. Lopez. 2018. Complex dynamics in a stratified lid-driven square cavity flow. Journal of Fluid Mechanics 855: 43–66.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Comments by Uwe Harlander and Evgeny Ermanyuk are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo R. M. Maas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maas, L.R.M. (2022). Water Waves in Isotropic and Anisotropic Media: A comparison. In: Schuttelaars, H., Heemink, A., Deleersnijder, E. (eds) The Mathematics of Marine Modelling. Mathematics of Planet Earth, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-09559-7_2

Download citation

Publish with us

Policies and ethics