Skip to main content

An Ontology to Support Automatic Drug Dose Titration

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2022)

Abstract

Drug dose titration (DT) is the clinical process of progressively adjusting the dose of a medication for the maximum benefit of the patient. Several DT clinical models exist based on the elementary concepts of null, initial, and maximal doses, as well as, dose increments and decrements. These values depend on the target disease, the drug considered, and some parameters such as the patient’s age, gender, weight, and race. This paper describes the formalization of this knowledge as an ontology, and its use to detect chronic hypertension patient treatment deviations from standard DT models with regard to drug replacement (step-1 treatment) and drug supplementation (step-2 treatment).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/diagnosis-treatment/drc-20373417.

References

  1. Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif. Intell. Med. 38(2), 171–95 (2006). https://doi.org/10.1016/j.artmed.2006.03.007

    Article  Google Scholar 

  2. Bhattacharyya, S.B.: Introduction to SNOMED CT. Springer, Heidelberg (2015)

    Google Scholar 

  3. Carroll, R., Mudge, A., Suna, J., Denaro, C., Atherton, J.: Prescribing and up-titration in recently hospitalized heart failure patients attending a disease management program. Int. J. Cardiol. 216, 121–27 (2016)

    Article  Google Scholar 

  4. Connelly, D., Cotterell, M.: Medication errors: where do they happen? Pharm. J. Inforgraphic (2019)

    Google Scholar 

  5. Ethier, J.F., Goyer, F., Fabry, P., Barton, A.: The prescription of drug ontology 2.0 (PDRO): more than the sum of its parts. Int. J. Environ. Res. Public Health 18, 12025 (2021). https://doi.org/10.3390/ijerph182212025

    Article  Google Scholar 

  6. Feldman, H.J., Dumontier, M., Ling, S., Haider, N., Hogue, C.W.: CO: a chemical ontology for identification of functional groups and semantic comparison of small molecules. FEBS Lett. 579(21), 4685–4691 (2005). https://doi.org/10.1016/j.febslet.2005.07.039

    Article  Google Scholar 

  7. Fox, G.N., Kaleem, U., Music, E.: Epocrates essentials: is the expanded product an improvement? J. Fam. Pract. 54(1), 57–63 (2005)

    Google Scholar 

  8. Gómez-Pérez, A., Martínez-Romero, M., Rodríguez-González, A., Vázquez, G., Vázquez-Naya, J.M.: Ontologies in medicinal chemistry: current status and future challenges. Curr. Top. Med. Chem. 13(5), 576–590 (2013)

    Article  Google Scholar 

  9. Hanna, J., Joseph, E., Brochhausen, M., Hogan, W.R.: Building a drug ontology based on RxNorm and other sources. J Biomed. Semant. 4(1), 44 (2013). https://doi.org/10.1186/2041-1480-4-44

    Article  Google Scholar 

  10. Hastings, J., de Matos, P., et al.: The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 41(Database issue), D456–D463 (2013). https://doi.org/10.1093/nar/gks1146

    Article  Google Scholar 

  11. Hastings, J., Chepelev, L., et al.: The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web. PLoS One 6(10), e25513 (2011). https://doi.org/10.1371/journal.pone.0025513

    Article  Google Scholar 

  12. Hickey, A., Suna, J., et al.: Improving medication titration in heart failure by embedding a structured medication titration plan. Int. J. Cardiol. 224, 99–106 (2016)

    Article  Google Scholar 

  13. Health first Europe, declaration for patient safety working document (2017). https://healthfirsteurope.eu/wp-content/uploads/2017/12/PS-Declaration-Working-Document-004.pdf

  14. Landry, M., Lafrenière, S., Patry, S., Potvin, S., Lemasson, M.: The clinical relevance of dose titration in electroconvulsive therapy: a systematic review of the literature. Psychiatry Res. 294, 113497 (2020)

    Article  Google Scholar 

  15. Maxwell, S.: Chapter 2: therapeutics and good prescribing: choosing a dosing regime. In Walker BR, et al. (eds.). Davidson’s Principles and Practice of Medicine, p. 34. Elsevier Health Sciences (2013). ISBN 978-0-7020-5103-6

    Google Scholar 

  16. Multi-drug interaction checker (2021). http://reference.medscape.com/drug-interactionchecker

  17. Michel, M.C., Staskin, D.: Understanding dose titration: overactive bladder treatment with fesoterodine as an example. Europ. Urology Suppls. 10, 8–13 (2011)

    Article  Google Scholar 

  18. Miftahurrohmah, B., Iriawan, N., Wulandari, C., Dharmawan, Y.S.: Individual control optimization of drug dosage using individual Bayesian pharmacokinetics model approach. Procedia Comput. Sci. 161, 593–600 (2019)

    Article  Google Scholar 

  19. Mirinejad, H., Gaweda, A.E., Brier, M.E., Zurada, J.M., Inanc, T.: Individualized drug dosing using RBF-Galerkin method: case of anemia management in chronic kidney disease. Comput. Methods Programs Biomed. 148, 45–53 (2017)

    Article  Google Scholar 

  20. NICE. Hypertension in adults: diagnosis and management (2019). www.nice.org.uk/guidance/ng136

  21. Nikiema, J.N., Liang, M.Q., Després, P., Motulsky, A.: OCRx: canadian drug ontology. Stud. Health Technol. Inf. 281, 367–371 (2021)

    Google Scholar 

  22. Poveda-Villalón, María, Espinoza-Arias, Paola, Garijo, Daniel, Corcho, Oscar: Coming to terms with fair ontologies. In: Keet, C. Maria., Dumontier, Michel (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp. 255–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3_18

    Chapter  Google Scholar 

  23. Reyes-Peña, C., Vidal, M. T., Bravo, M., Motz, R.: Drug ontology for the public mexican health system. In CEUR Workshop Proceedings, pp. 58–69 (2020)

    Google Scholar 

  24. Riaño, David, Kamišalić, Aida: Modelling and assessment of one-drug dose titration. In: Tucker, Allan, Henriques Abreu, Pedro, Cardoso, Jaime, Pereira Rodrigues, Pedro, Riaño, David (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 459–468. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_55

    Chapter  Google Scholar 

  25. Riaño, D., Alonso, J.R., Pečnik, S., Kamišalić, A.: Modelling and assessing one- and two-drug dose titrations. Submitted as selected invited paper to AIIM (2022)

    Google Scholar 

  26. Schuck, R.N., Pacanowski, M., Kim, S., et al.: Use of titration as a therapeutic individualization strategy: an analysis of food and drug administration-approved drugs. Clin. Transl. Sci. 12(3), 236–39 (2019)

    Article  Google Scholar 

  27. Tariq RA, Vashisht R, Sinha A, et al.: Medication dispensing errors and prevention. In: StatPearls. Treasure Island (FL): StatPearls Publishing (2022). https://www.ncbi.nlm.nih.gov/books/NBK519065/

  28. Truda, G., Marais, P.: Evaluating warfarin dosing models on multiple datasets with a novel software framework and evolutionary optimisation. J. Biomed. Inf. 113, 103634 (2019)

    Article  Google Scholar 

  29. Drugs & medications browser (2021). https://www.webmd.com/drugs/2/index

  30. Medication errors: technical series on safer primary care. geneva: world health organization (2016). Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  31. WHO launches global effort to halve medication-related errors in 5 years (2017). https://www.who.int/news/item/29-03-2017-who-launches-global-effort-to-halve-medication-related-errors-in-5-years

  32. WHO collaborating centre for drug statistics methodology: guidelines for ATC classification and DDD assignment 2021. 24th Edition (2021). https://www.whocc.no/filearchive/publications/2021_guidelines_web.pdf

Download references

Acknowledgments

The authors acknowledge support from the Slovenian Research Agency (Research Core Funding No. P2-0057) and the Spanish Ministry of Science and Innovation (Funding Code PID2019-105789RB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Riaño .

Editor information

Editors and Affiliations

Appendix. Summary of drug information in the ontology

Appendix. Summary of drug information in the ontology

Drug Type

Drug Name

Patient Group

Disease

Init dose

Max dose

Dose incr

Frequency

BB

Acebutolol

adult

HTN

200 mg

400 mg

200 mg\(^{(*)}\)

bid

Atenolol

adult

HTN

50 mg

100 mg

50 mg\(^{(*)}\)

od

Bisoprolol

adult

HTN

5 mg

20 mg

5 mg

od

Metoprolol (tartrate)

adult

HTN

50 mg

90 mg

50 mg\(^{(*)}\)

Bid

Metoprolol (succinate)

adult

HTN

25 mg

450 mg

25 mg\(^{(*)}\)

od

Nadolol

adult

HTN

40 mg

320 mg

40 mg\(^{(*)}\)

od

Nebivolol

adult

HTN

5 mg

40 mg

5 mg\(^{(*)}\)

od

 

Propranolol

adult

HTN

40 mg

640 mg

40 mg\(^{(*)}\)

od

 

Child

HTN

0.04 mg/kg

8 mg/kg

0.04 mg/kg

Qid

 

1y-17y

HTN

0.3 mg/kg

213 mg/day

1.3 mg/kg

Tid

ACEi

Benazepril

adult

HTN

10 mg

80 mg

10 mg\(^{(*)}\)

od

6y-17y

HTN

0.2 mg/kg

40 mg/day

0.2 mg/kg\(^{(*)}\)

od

Captopril

adult

HTN

25 mg

450 mg

25 mg

Tid

Enalapril

adult

HTN

5 mg

40 mg

5 mg\(^{(*)}\)

od

1M-17y

HTN

0.08 mg/kg

0.58 mg/kg

0.08 mg/kg\(^{(*)}\)

od

Fosinopril

adult

HTN

10 mg

40 mg

10 mg\(^{(*)}\)

od

Lisinopril

adult

HTN

5 mg

80 mg

5 mg\(^{(*)}\)

od

Geriatric

HTN

2.5 mg

40 mg

2.5 mg

od

6y-17y

HTN

0.07 mg/kg

0.61 mg/kg

0.07 mg/kg\(^{(*)}\)

od

Moexipril

adult

HTN

7.5 mg

60 mg

7.5 mg\(^{(*)}\)

od

Perindopril

adult

HTN

4 mg

16 mg

4 mg\(^{(*)}\)

od

>70y

HTN

4 mg

16 mg

4 mg

od

Quinapril

adult

HTN

10 mg

80 mg

10 mg

od

Ramipril

adult

HTN

2.5 mg

20 mg

2.5 mg \(^{(*)}\)

od

Trandolapril

adult non-black

HTN

1 mg

4 mg

1 mg\(^{(*)}\)

od

adult black

HTN

2 mg

4 mg

2 mg\(^{(*)}\)

od

TLD

Chlorothiazide

adult

HTN

500 mg

1000 mg mg

500 mg\(^{(*)}\)

od

<6M

HTN

5 mg/kg

125 mg

5 mg/kg\(^{(*)}\)

Bid

6M-2y

HTN

5 mg/kg

125 mg

5 mg/kg\(^{(*)}\)

Bid

2y-12y

HTN

5 mg/kg

500 mg

5 mg/kg\(^{(*)}\)

Bid

Chlorthalidone

adult

HTN

25 mg

100 mg

50 mg

od

 

Hydrochlorothiazide

adult

HTN

12.5 mg

25 mg

12.5 mg \(^{(*)}\)

bid

 

< 6M

HTN

1.5 mg/kg

1.5 mg/kg

0 mg/kg

bid

 

6M-2y

HTN

0.5 mg/kg

1 mg/kg

0.5 mg/kg \(^{(*)}\)

bid

 

2y-12y

HTN

0.5 mg/kg

50 mg

1.5 mg/kg \(^{(*)}\)

bid

 

Indapamide

adult

HTN

1.25 mg

-

-

od

 

Metolazone (Zaroxolyn)

adult

HTN

2.5 mg

-

-

od

 

Metolazone (Mykrox)

adult

HTN

0.5 mg

-

-

od

PSD

Spironalactone

adult

HTN

50–100 mg

400 mg

50 mg

od

ARB

Azilsartan (Edarbi)

-

-

80 mg

80 mg

0 mg

od

Candesartan (Atacand)

adult

HTN

16 mg

32 mg

8 mg

od

1y-6y

HTN

0.2 mg/kg

-

-

od

6y-17y <50kg

HTN

4–8 mg

-

-

od

6y-17y >50kg

HTN

8–16 mg

-

-

od

Eprosartan

adult

HTN

600 mg

800 mg

200 mg

od

Irbesartan (Avapro)

adult

HTN

150 mg

300 mg

150 mg

od

Losartan (Cozaar)

adult

HTN

50 mg

100 mg

50 mg

od

>=6y

HTN

0.7 mg/kg

50 mg

-

od

Olmesartan (Benicar)

adult

HTN

20 mg

40 mg

20 mg

od

6y-16y 20–35kg

HTN

10 mg

20 mg

10 mg

od

6y-16y >35kg

HTN

20 mg

40 mg

20 mg

od

Telmisartan (Micardis)

adult

HTN

40 mg

-

-

od

Valsartan (Diovan)

adult

HTN

80 mg

320 mg

80 mg

od

6y-16y

HTN

1.3 mg/kg

40 mg

-

od

AB

Doxazosin (Cardura)

adult

HTN

1 mg

16 mg

Double

od

Prazosin (Minipress)

adult

HTN

1 mg

10 mg

-

Bid

Terazosin

adult

HTN

1 mg

20 mg

2 mg

od

CCB

Amlodipine (Norvasc)

adult

HTN

5 mg

10 mg

5 mg

od

geriatric

HTN

2.5 mg

10 mg

2.5 mg

od

6y-17y

HTN

-

5 mg

-

od

Diltiazem (Extended Release Caps.)

adult

HTN

120 mg

540 mg

120 mg

od

Felodipine

adult

HTN

5 mg

-

-

od

geriatric

HTN

2.5 mg

-

-

od

>1y

HTN

2.5 mg

10 mg

2.5 mg

od

Isradipine (Immediate-release Caps.)

adult

HTN

2.5 mg

20 mg

2.5 mg

Bid

Nicardipine (oral Immediate-release)

adult

HTN

20 mg

-

-

Tid

Nifedipine (Procardia)

adult

HTN

10 mg

40 mg

10 mg

Tid

Nisoldipine

adult

HTN

17 mg

34 mg

17 mg

od

Verapamil (Calan SR)

adult

HTN

120 mg

480 m

120 mg

od

  1. (*) If no explicit information is found about dose increments, they are made equal to initial dose.
  2. Notation: (BB) beta-bocker, (ACEi) angiotensin converting enzyme inhibitor, (TLD) thiazide-like diuretic, (PSD) potassium-sparing diuretic, (ARB) angiotensin-II receptor blocker, (AB) alpha-blocker, and (CCB) calcium channel blocker.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riaño, D., Alonso, JR., Pečnik, Š., Kamišalić, A. (2022). An Ontology to Support Automatic Drug Dose Titration. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics