Skip to main content

Automatic Framework for Patient-Specific Biomechanical Computations of Organ Deformation: An Epilepsy (EEG) Case Study

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine (MICCAI 2021)

Abstract

Our motivation is to enable non-specialists to use sophisticated biomechanical models in the clinic. To further this goal, in this study, we constructed a framework within 3D Slicer for automatically generating and solving patient-specific biomechanical models of the brain. This framework allows determining automatically patient-specific geometry from MRI data, generating patient-specific computational grid, defining boundary conditions and external loads, assigning material properties to intracranial constituents and solving the resulting set of differential equations. We used the Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm to solve these equations. We demonstrated the effectiveness and appropriateness of our framework on a case study of brain tissue deformations caused by placement of electrodes on the brain surface in intracranial electroencephalography (iEEG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.

    Google Scholar 

  2. Ciarlet, P. G. (1988). Mathematical elasticity. North Hollad.

    Google Scholar 

  3. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

    Article  Google Scholar 

  4. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). State-of-the-art methods for brain tissue segmentation: A review. IEEE Reviews in Biomedical Engineering, 10, 235–249.

    Article  Google Scholar 

  5. Fedorov, A., Beichel, R., Kalpathy Cramer, J., Finet, J., Fillion Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J., Pieper, S., & Kikinis, R. (2012). 3D Slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341.

    Article  Google Scholar 

  6. Geuzaine, C., & Remacle, J. F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331.

    Article  MathSciNet  MATH  Google Scholar 

  7. Horton, A., Wittek, A., Joldes, G. R., & Miller, K. (2010). A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. International Journal for Numerical Methods in Biomedical Engineering, 26, 977–998.

    Article  MATH  Google Scholar 

  8. Jin, X., Joldes, G. R., Miller, K., Yang, K. H., & Wittek, A. (2014). Meshless algorithm for soft tissue cutting in surgical simulation. Computer Methods in Biomechanics and Biomedical Engineering, 17, 800–817.

    Article  Google Scholar 

  9. Joldes, G., Bourantas, G., Zwick, B., Chowdhury, H., Wittek, A., Agrawal, S., Mountris, K., Hyde, D., Warfield, S. K., & Miller, K. (2019). Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 56, 152–171.

    Article  Google Scholar 

  10. Joldes, G., Wittek, A., & Miller, K. (2009). Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 13(6), 912–919.

    Article  Google Scholar 

  11. Joldes, G. R., Chowdhury, H. A., Wittek, A., Doyle, B., & Miller, K. (2015). Modified moving least squares with polynomial bases for scattered data approximation. Applied Mathematics and Computation, 266, 893–902.

    Article  MathSciNet  MATH  Google Scholar 

  12. Joldes, G. R., Wittek, A., & Miller, K. (2011). An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. International Journal for Numerical Methods in Biomedical Engineering, 27(2), 173–185.

    Article  MathSciNet  MATH  Google Scholar 

  13. Joldes, G. R., Wittek, A., Miller, K., & Morriss, L. (2008). Realistic and efficient brain-skull interaction model for brain shift computation. In Computational Biomechanics for Medicine III Workshop, MICCAI.

    Google Scholar 

  14. Joldes, G. R., Wittek, A., Warfield, S. K., & Miller, K. (2012). Performing brain image warping using the deformation field predicted by a biomechanical model (pp. 89–96). Springer.

    Google Scholar 

  15. Li, M., Miller, K., Joldes, G. R., Kikinis, R., & Wittek, A. (2016). Biomechanical model for computing deformations for whole-body image registration: A meshless approach. International Journal for Numerical Methods in Biomedical Engineering, 32(12).

    Google Scholar 

  16. Li, M., Wittek, A., Joldes, G. R., & Miller, K. (2016). Fuzzy tissue classification for non-linear patient-specific biomechanical models for whole-body image registration. In G. R. Joldes, B. Doyle, A. Wittek, P. M. F. Nielsen & K. Miller (Eds.), Computational biomechanics for medicine: Imaging, modeling and computing (pp. 85–96). Springer International Publishing.

    Google Scholar 

  17. Miga, M. I., Sun, K., Chen, I., Clements, L. W., Pheiffer, T. S., Simpson, A. L., & Thompson, R. C. (2016). Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: Experience in 16 cases. International Journal of Computer Assisted Radiology and Surgery, 11(8), 1467–1474.

    Article  Google Scholar 

  18. Miller, K., Chinzei, K., Orssengo, G., & Bednarz, P. (2000). Mechanical properties of brain tissue in-vivo: Experiment and computer simulation. Journal of Biomechanics, 33, 1369–1376.

    Article  Google Scholar 

  19. Miller, K., Horton, A., Joldes, G. R., & Wittek, A. (2012). Beyond finite elements: A comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. Journal of biomechanics, 45(15), 2698–2701.

    Article  Google Scholar 

  20. Miller, K., & Lu, J. (2013). On the prospect of patient-specific biomechanics without patient-specific properties of tissues. Journal of the Mechanical Behavior of Biomedical Materials, 27, 154–166.

    Article  Google Scholar 

  21. Miller, K., Wittek, A., & Joldes, G. (2011). Biomechanical modeling of the brain for computer-assisted neurosurgery. In Biomechanics of the brain (pp. 111–136). Springer.

    Google Scholar 

  22. Neal, M. L., & Kerckhoffs, R. (2010). Current progress in patient-specific modeling. Briefings in Bioinformatics, 11, 15.

    Article  Google Scholar 

  23. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  24. Pinter, C., Lasso, A., & Fichtinger, G. (2019). Polymorph segmentation representation for medical image computing. Computer Methods and Programs in Biomedicine, 171, 19–26.

    Article  Google Scholar 

  25. Pruthi, S., Dawant, B., & Parker, S. L. (2020). Initial experience with using a structured light 3D scanner and image registration to plan bedside subdural evacuating port system placement.

    Google Scholar 

  26. Safdar, S., Joldes, G., Zwick, B., Bourantas, G., Kikinis, R., Wittek, A., & Miller, K. (2021). Automatic framework for patient-specific biomechanical computations of organ deformation (pp. 3–16). Springer.

    Google Scholar 

  27. Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3), 1060–1075.

    Article  Google Scholar 

  28. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., & Seidel, H. P. (2004). Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing.

    Google Scholar 

  29. Sullivan, C., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37), 1450.

    Article  Google Scholar 

  30. Valette, S., Chassery, J. M., & Prost, R. (2008). Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics, 14(2), 369–381.

    Article  Google Scholar 

  31. Waldron, K. J., & Kinzel, G. L. (2004). Kinematics, dynamics, and design of machinery. Wiley.

    Google Scholar 

  32. Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH Computer Graphics, (Vol. 21, pp. 163–169). Association for Computing Machinery.

    Google Scholar 

  33. Wittek, A., Grosland, N., Joldes, G., Magnotta, V., & Miller, K. (2016). From finite element meshes to clouds of points: A review of methods for generation of computational biomechanics models for patient-specific applications. Annals of Biomedical Engineering, 44(1), 3–15.

    Article  Google Scholar 

  34. Wittek, A., Hawkins, T., & Miller, K. (2009). On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomechanics and Modeling in Mechanobiology, 8, 77–84.

    Article  Google Scholar 

  35. Wittek, A., Joldes, G., Couton, M., Warfield, S. K., & Miller, K. (2010). Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; Application to non-rigid neuroimage registration. Progress in Biophysics and Molecular Biology, 103, 292–303.

    Article  Google Scholar 

  36. Wittek, A., Joldes, G. R., & Miller, K. (2019). Finite element algorithms for computational biomechanics of the brain (pp. 243–272). Springer.

    Google Scholar 

  37. Wittek, A., Miller, K., Kikinis, R., & Warfield, S. K. (2007). Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics, 40, 919–929.

    Google Scholar 

  38. Zhang, J. Y., Joldes, G. R., Wittek, A., & Miller, K. (2013). Patient-specific computational biomechanics of the brain without segmentation and meshing. International Journal for Numerical Methods in Biomedical Engineering, 29(2), 293–308.

    Article  MathSciNet  Google Scholar 

  39. Zwick, B.F., Bourantas, G.C., Safdar, S., Joldes, G.R., Hyde, D.E., Warfield, S.K., Wittek, A., & Miller, K. (2022). Patient-specific solution of the electrocorticography forward problem in deforming brain (preprint on ArXiv:2109.07164, submitted to Neuroimage).

Download references

Acknowledgements

The funding from NHMRC grants APP1162030; APP1144519 is gratefully acknowledged. The first author acknowledges scholarship funding from University Postgraduate Award. We also wish to thank 3D Slicer on-line community https://discourse.slicer.org/ whose members have made many valuable contributions. Our special thanks go to Dr. Andras Lasso of Laboratory for Percutaneous Surgery (PerkLab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Safdar, S. et al. (2022). Automatic Framework for Patient-Specific Biomechanical Computations of Organ Deformation: An Epilepsy (EEG) Case Study. In: Nielsen, P.M., Nash, M.P., Li, X., Miller, K., Wittek, A. (eds) Computational Biomechanics for Medicine. MICCAI 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-09327-2_5

Download citation

Publish with us

Policies and ethics