Skip to main content

Microplastics, Their Toxic Effects on Living Organisms in Soil Biota and Their Fate: An Appraisal

  • Chapter
  • First Online:
Soil Health and Environmental Sustainability

Abstract

Microplastics are miniature plastic fragments that originate as a result of the advancement of commercial products as well as the breakdown of bigger plastics. Microplastics have been identified as a serious global environmental issue due to its poor waste management. This review covers the impact of microplastics on the soil ecosystem, their transit behaviour, and their impact on numerous organisms. The impact of microplastics on soil animals and plants, is influenced by the size, shape, and concentration of microplastics in the soil. Microplastic has been found in a variety of soil types, including agricultural, industrial, and coastal soils. Plastic particles in soil have increased, posing a major threat to soil ecosystem functioning, including the soil microbial population, nitrogen cycle, and higher organisms. The current review highlights and assimilates the findings of other scientists so that it can serve as a resource for readers and scientists dealing with microplastics, including toxicity, risk assessment in the environment, and microplastic treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc B Biol Sci 364(1526):1977–1984

    Google Scholar 

  • Awet TT, Kohl Y, Meie F, Straskraba S, Grün AL, Ruf T, Jost C, Drexel R, Tunc E, Emmerling C (2018) Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur 30(1):11. https://doi.org/10.1186/s12302-018-0140-6

    Article  Google Scholar 

  • Ballent A, Corcoran PL, Madden O, Helm PA, Longstaffe FJ (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull 110(1):383–395

    Google Scholar 

  • Biginagwa FJ, Mayoma BS, Shashoua Y, Syberg K, Khan FR (2016) First evidence of microplastics in the African Great Lakes: recovery from Lake Victoria Nile perch and Nile tilapia. J Great Lakes Res 42(1):146–149

    Google Scholar 

  • Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435

    Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179

    Google Scholar 

  • Brussaard L (1997) Biodiversity and ecosystem functioning in soil. Ambio 563–570.

    Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395

    Google Scholar 

  • Chen H, Wang Y, Sun X, Peng Y, Xiao L (2020) Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243:125271

    Google Scholar 

  • Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62(10):2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030

    Article  Google Scholar 

  • Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420

    Google Scholar 

  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol 24(4):1405–1416

    Google Scholar 

  • Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458. https://doi.org/10.1016/j.envpol.2016.12.013

  • de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53(10):6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  Google Scholar 

  • Duncan EM, Broderick AC, Fuller WJ, Galloway TS, Godfrey MH, Hamann M, Limpus CJ, Lindeque PK, Mayes AG, Omeyer LCM, Santillo D, Snape RTE, Godley BJ (2019) Microplastic ingestion ubiquitous in marine turtles. Glob Chang Biol 25(2):744–752. https://doi.org/10.1111/gcb.14519

  • Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):1–25

    Google Scholar 

  • Dümichen E, Barthel AK, Braun U, Bannick CG, Brand K, Jekel M, Senz R (2015) Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res 85:451–457

    Google Scholar 

  • ECHA (2019) proposes to restrict intentionally added microplastics ECHA/PR/19/03. Accessed 30 June 2021

    Google Scholar 

  • Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46(22):12302–12315

    Google Scholar 

  • Environmental Protection Agency (2015) Urban waste water treatment in 2014: a report for the year 2014. Accessed 30 June 2021

    Google Scholar 

  • Espí E, Salmerón A, Fontecha A, García-Alonso Y, Real AI (2006) Journal of Plastic Film and. J Plastic Film Sheet 22:59

    Google Scholar 

  • Gaylor MO, Harvey E, Hale RC (2013) Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils. Environ Sci Technol 47(23):13831–13839

    Google Scholar 

  • Gregory MR (1996) Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Mar Pollut Bull 32(12):867–871

    Google Scholar 

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77(1–2):100–106

    Google Scholar 

  • He D, Luo Y, Lu S, Liu M, Song Y, Lei L (2018) Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC, Trends Anal Chem 109:163–172

    Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    Google Scholar 

  • Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017a) Large microplastic particles in sediments of tributaries of the River Thames, UK–abundance, sources and methods for effective quantification. Mar Pollut Bull 114(1):218–226

    Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017b) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Google Scholar 

  • Iqbal S, Xu J, Allen SD, Khan S, Nadir S, Arif MS, Yasmeen T (2020) Unravelling consequences of soil micro-and nano-plastic pollution for soil-plant system with implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 127578

    Google Scholar 

  • Jemec Kokalj A, Horvat P, Skalar T, Kržan A (2018) Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Sci Total Environ 615:761–766. https://doi.org/10.1016/j.scitotenv.2017

  • Jiang XJ, Liu W, Wang E, Zhou T, Xin P (2017) Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, north western China. Soil and Tillage Research 166:100–107

    Google Scholar 

  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838

    Google Scholar 

  • Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, Voit B (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem 408(29):8377–8391

    Google Scholar 

  • Klein S, Worch E, Knepper TP (2015) Microplastics in the Rhine-Main area in Germany: occurrence, spatial distribution and sorption of organic contaminants. Environ Sci Technol 49:2–3

    Google Scholar 

  • Lei L, Liu M, Song Y, Lu S, Hu J, Cao C, Xie B, Shi H, He D (2018) Polystyrene (nano) microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ Sci Nano 5(8):2009–2020

    Google Scholar 

  • Liu H, Yang X, Liu G, Liang C, Xue S, Chen H, Ritsema CJ, Geissen V (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917. https://doi.org/10.1016/j.chemosphere

    Article  Google Scholar 

  • Liu K, Wang X, Fang T, Xu P, Zhu L, Li D (2019) Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110

    Article  Google Scholar 

  • Liu L, Fokkink R, Koelmans AA (2016) Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. Environ Toxicol Chem 35(7):1650–1655

    Google Scholar 

  • Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, Zhou W, Cao C, Shi H, Yang X, He D (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242(Pt A):855–862. https://doi.org/10.1016/j.envpol.2018.07.051

    Article  Google Scholar 

  • Lwanga H, Mendoza Vega EJ, Ku Quej V, Chi J, Sanchez Del Cid L, Chi C, Escalona Segura G, Gertsen H, Salánki T, van der Ploeg M, Koelmans AA, Geissen V (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):14071. https://doi.org/10.1038/s41598-017-14588-2

  • Maa BS, Daphi D, Lehmann A, Rillig MC (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456–459

    Google Scholar 

  • Mai L, Bao LJ, Wong CS, Zeng EY (2018) Microplastics in the terrestrial environment. In: Microplastic contamination in aquatic environments. Elsevier, pp 365–378

    Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1–2):39–45

    Google Scholar 

  • Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    Google Scholar 

  • Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin?

    Google Scholar 

  • Piehl S, Leibner A, Löder MG, Dris R, Bogner C, Laforsch C (2018) Identification and quantification of macro-and microplastics on an agricultural farmland. Sci Rep 8(1):1–9

    Google Scholar 

  • Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    Google Scholar 

  • Qi Y, Beriot N, Gort G, Lwanga EH, Gooren H, Yang X, Geissen V (2020) Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ Pollut 266:115097

    Google Scholar 

  • Reynolds C, Ryan PG (2018) Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar Pollut Bull 126:330–333

    Google Scholar 

  • Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil?

    Google Scholar 

  • Rillig MC, Ingraffia R, de Souza Machado AA (2017) Microplastic incorporation into soil in agroecosystems. Front Plant Sci 8:1805

    Google Scholar 

  • Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, Da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503

    Google Scholar 

  • Ryan PG, Moore CJ, Van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philoso Trans R Soc B Biol Sci 364(1526):1999–2012

    Google Scholar 

  • Sarker A, Deepo DM, Nandi R, Rana J, Islam S, Rahman S, Hossain MN, Islam MS, Baroi A, Kim JE (2020) A review of microplastics pollution in the soil and terrestrial ecosystems: a global and Bangladesh perspective. Sci Total Environ 733:139296. https://doi.org/10.1016/j.scitotenv.2020.139296

    Article  Google Scholar 

  • Simon M, van Alst N, Vollertsen J (2018) Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane array (FPA)–based Fourier transform infrared (FT–IR) imaging. Water Res 142:1–9. https://doi.org/10.1016/j.watres.2018.05.019

  • Sforzini S, Oliveri L, Chinaglia S, Viarengo A (2016) Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Front Environ Sci 4:68

    Google Scholar 

  • Shim WJ, Song YK, Hong SH, Jang M (2016) Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull 113(1–2):469–476

    Google Scholar 

  • Silva MF, Doménech-Carbó MT, Fuster-López L, Mecklenburg MF, Martin-Rey S (2010) Identification of additives in poly (vinylacetate) artist’s paints using PY-GC-MS. Anal Bioanal Chem 397(1):357–367

    Google Scholar 

  • Susanti R, Yuniastuti A, Fibriana F (2021) The Evidence of microplastic contamination in Central Javanese local ducks from intensive animal husbandry. Water Air Soil Pollut 232:178. https://doi.org/10.1007/s11270-021-05142-y

  • Thompson RC (2006) Plastic debris in the marine environment: consequences and solutions. Mar Nat Conserv Eur 193:107–115

    Google Scholar 

  • Thompson RC, Law KL (2014) Microplastics in the seas. Science 345(6193):144–145

    Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838. https://doi.org/10.1126/science.1094559

    Article  Google Scholar 

  • Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarria IM, Van den Eede G (2019) Review of micro-and nanoplastic contamination in the food chain. Food Addit Contam Part A 36(5):639–673

    Google Scholar 

  • UNEP (2018) Plastic planet: how tiny plastic particles are polluting our soil. Accessed 29 June 2021

    Google Scholar 

  • Velzeboer I, Kwadijk CJAF, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48(9):4869–4876

    Google Scholar 

  • Wan Y, Wu C, Xue Q, Hui X (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582

    Google Scholar 

  • Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, Zhang P (2019) Microplastics as contaminants in the soil environment: a mini-review. Sci Total Environ 15(691):848–857. https://doi.org/10.1016/j.scitotenv.2019.07.209

    Article  Google Scholar 

  • Wardle DA (2013) Communities and ecosystems: linking the aboveground and belowground components (MPB-34). Princeton University Press

    Google Scholar 

  • Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4(4):eaap8060

    Google Scholar 

  • Wu C, Zhang K, Huang X, Liu J (2016) Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ Sci Pollut Res 23(9):8819–8826

    Google Scholar 

  • Xu B, Liu F, Brookes PC, Xu J (2018) The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Mar Pollut Bull 131:191–201

    Google Scholar 

  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y … Xu J (2020) Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Crit Rev Environ Sci Technol 50(21):2175–2222

    Google Scholar 

  • Yu M, Van Der Ploeg M, Lwanga EH, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V (2019) Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ Chem 16(1):31–40

    Google Scholar 

  • Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20

    Google Scholar 

  • Zhang GS, Zhang FX, Li XT (2019) Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci Total Environ 670:1–7

    Google Scholar 

  • Zhao J, Liu L, Zhang Y, Wang X, Wu F (2018) A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ Pollut 238:121–129

    Google Scholar 

  • Zhou Q, Zhang H, Fu C, Zhou Y, Dai Z, Li Y, Luo Y (2018) The distribution and morphology of microplastics in coastal soils adjacent to the Bohai sea and the Yellow sea. Geoderma 322:2101–2208

    Google Scholar 

  • Zhu BK, Fang YM, Zhu D, Christie P, Ke X, Zhu YG (2018a) Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ Pollut 239:408–415

    Google Scholar 

  • Zhu D, Bi QF, Xiang Q, Chen QL, Christie P, Ke X, Wu LH, Zhu YG (2018b) Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ Pollut 235:150–154

    Google Scholar 

  • Zhou Q, Zhang H, Zhou Y, Yuan L, Xue Y, Fu C, Chen T, Luo Y (2016) Separation of microplastics from a coastal soil and their surface microscopic features. Chinese Sci Bull 61:1604–1611

    Google Scholar 

  • Zhang H (2017) Transport of microplastics in coastal seas. Estuar Coast Shelf Sci 199:74–86

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology, New Delhi for infrastructural support in the form of DST-FIST (SR/FST/LS-I/2018/173), and to DST-Govt. of West Bengal for financial support [261(Sanc./ST/P/ S&T/1G-59/2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjyo Jyoti Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, S. et al. (2022). Microplastics, Their Toxic Effects on Living Organisms in Soil Biota and Their Fate: An Appraisal. In: Shit, P.K., Adhikary, P.P., Bhunia, G.S., Sengupta, D. (eds) Soil Health and Environmental Sustainability. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-09270-1_17

Download citation

Publish with us

Policies and ethics