Skip to main content

Performance Analysis of an Ontology Model Enabling Interoperability of Artificial Intelligence Agents

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Systems (CSOC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 502))

Included in the following conference series:

Abstract

In the context of current information systems, the necessity of processing vast amounts of information enforces a significant paradigm shift. The monolithic data formats are gradually replaced with semantic models enclosing light, layered, and easily replicable structures. Advances represented by blockchain, decentralized data storage and replication along with semantic models open new possibilities to combine Artificial Intelligence (AI) algorithms in multi-agent, cross-organizational systems. By taking a semantic model approach, the communication and coordination between agents can be abstracted by the ontology concepts used to define the data models. This paper explores the feasibility of utilizing ontology-based semantic data models as communication interfaces among multiple AI agents. Specifically, it focuses on the storage, retrieval, and replication part of this process in a decentralized medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Admane, L., Benatchba, K., Koudil, M., Siad, L., Maziz, S.: AntPart: an algorithm for the unsupervised classification problem using ants. Appl. Math. Comput. 180(1), 16–28 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  3. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint arXiv:1407.3561 (2014)

  4. Brayford, D., Vallecorsa, S., Atanasov, A., Baruffa, F., Riviera, W.: Deploying AI frameworks on secure HPC systems with containers. In: 2019 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Costa, D., Bezemer, C.P., Leitner, P., Andrzejak, A.: What’s wrong with my benchmark results? Studying bad practices in JMH benchmarks. IEEE Trans. Softw. Eng. 47(7), 1452–1467 (2019)

    Article  Google Scholar 

  6. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain technology: beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)

    Google Scholar 

  7. Demazeau, Y., Müller, J.P.: Decentralized AI, 2nd edn. Elsevier (1991)

    Google Scholar 

  8. Flores-Mendez, R.A.: Towards a standardization of multi-agent system framework. XRDS: Crossroads ACM Mag. Students 5(4), 18–24 (1999)

    Google Scholar 

  9. Hamada, M.: An environment for simulating multi-agents based on ants behavior. In: Proceedings of the 7th Conference on 7th WSEAS International Conference on Systems Theory and Scientific Computation, vol. 7, pp. 294–299. Citeseer (2007)

    Google Scholar 

  10. Harris, J.D., Waggoner, B.: Decentralized and collaborative AI on blockchain. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 368–375. IEEE (2019)

    Google Scholar 

  11. Höb, M., Kranzlmüller, D.: Enabling EASEY deployment of containerized applications for future HPC systems. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12137, pp. 206–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50371-0_15

    Chapter  Google Scholar 

  12. John, M.M., Holmström Olsson, H., Bosch, J.: Architecting AI deployment: a systematic review of state-of-the-art and state-of-practice literature. In: Klotins, E., Wnuk, K. (eds.) ICSOB 2020. LNBIP, vol. 407, pp. 14–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67292-8_2

    Chapter  Google Scholar 

  13. Kogure, J., Kamakura, K., Shima, T., Kubo, T.: Blockchain technology for next generation ICT. Fujitsu Sci. Tech. J 53(5), 56–61 (2017)

    Google Scholar 

  14. Kurtulmus, A.B., Daniel, K.: Trustless machine learning contracts; evaluating and exchanging machine learning models on the Ethereum blockchain. arXiv preprint arXiv:1802.10185 (2018)

  15. Kwon, J., Buchman, E.: Cosmos whitepaper (2019)

    Google Scholar 

  16. Liu, D., Zhang, Y., Jia, D., Zhang, Q., Zhao, X., Rong, H.: Toward secure distributed data storage with error locating in blockchain enabled edge computing. Comput. Stan. Interfaces 79, 103560 (2022)

    Google Scholar 

  17. Marathe, A., Narayanan, K., Gupta, A., Manoj, P.: DInEMMo: decentralized incentivization for enterprise marketplace models. In: 2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW), pp. 95–100. IEEE (2018)

    Google Scholar 

  18. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distributed smart grid: design and implementation. In: 2009 IEEE/PES Power Systems Conference and Exposition, pp. 1–8. IEEE (2009)

    Google Scholar 

  19. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control, vol. 27. Springer, Heidelberg (2008)

    Book  Google Scholar 

  20. Rizal Batubara, F., Ubacht, J., Janssen, M.: Unraveling transparency and accountability in blockchain. In: Proceedings of the 20th Annual International Conference on Digital Government Research, pp. 204–213 (2019)

    Google Scholar 

  21. Sun, Y.G., Wang, L.: Consensus problems in networks of agents with double-integrator dynamics and time-varying delays. Int. J. Control 82(10), 1937–1945 (2009)

    Article  MathSciNet  Google Scholar 

  22. Tara, A., Butean, A., Zamfirescu, C., Learney, R.: An ontology model for interoperability and multi-organization data exchange. In: Silhavy, R. (ed.) CSOC 2020. AISC, vol. 1225, pp. 284–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51971-1_23

    Chapter  Google Scholar 

  23. Tran, Q.N.N., Low, G.: MOBMAS: a methodology for ontology-based multi-agent systems development. Inf. Softw. 50(7–8), 697–722 (2008)

    Article  Google Scholar 

  24. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  25. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zheng, Y., Zhu, Y., Wang, L.: Consensus of heterogeneous multi-agent systems. IET Control Theor. Appl. 5(16), 1881–1888 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Tara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tara, A., Taban, N., Turesson, H. (2022). Performance Analysis of an Ontology Model Enabling Interoperability of Artificial Intelligence Agents. In: Silhavy, R. (eds) Artificial Intelligence Trends in Systems. CSOC 2022. Lecture Notes in Networks and Systems, vol 502. Springer, Cham. https://doi.org/10.1007/978-3-031-09076-9_35

Download citation

Publish with us

Policies and ethics