Abstract
Radial distortion correction for a single image is often overlooked in computer vision. It is possible to rectify images accurately when the camera and lens are known or physically available to take additional images with a calibration pattern. However, sometimes it is impossible to identify the camera or lens of an image, e.g., crowd-sourced datasets. Nonetheless, it is still important to correct that image for radial distortion in these cases. Especially in the last few years, solving the radial distortion correction problem from a single image with a deep neural network approach increased in popularity. This paper shows that these approaches tend to overfit completely on the synthetic data generation process used to train such networks. Additionally, we investigate which parts of this process are responsible for overfitting. We apply an explainability tool to analyze the trained models’ behavior. Furthermore, we introduce a new dataset based on the popular ImageNet dataset as a new benchmark for comparison. Lastly, we propose an efficient solution to the overfitting problem by feeding edge images to the neural networks instead of the images. Source code, data, and models are publicly available at https://github.com/cvjena/deeprect.
Keywords
- Radial distortion
- Monocular images
- Synthetic data
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alvarez, L., Gómez, L., Sendra, J.R.: An algebraic approach to lens distortion by line rectification. J. Math. Imag. Vis. 35(1), 36–50 (2009). https://doi.org/10.1007/s10851-009-0153-2
Barreto, J.P.: A unifying geometric representation for central projection systems. Comput. Vis. Image Underst. 103(3), 208–217 (2006)
Bogdan, O., Eckstein, V., Rameau, F., Bazin, J.C.: DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In: Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production, CVMP 2018, pp. 1–10. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3278471.3278479
Brown, D.C.: Decentering distortion of lenses. Photogrammetric Engineering and Remote Sensing (1966). https://ci.nii.ac.jp/naid/10022411406/
Bräuer-Burchardt, C., Voss, K.: Automatic lens distortion calibration using single views. In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennung 2000. Informatik aktuell, pp. 187–194. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59802-9_24
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Claus, D., Fitzgibbon, A.W.: A plumbline constraint for the rational function lens distortion model. In: Proceedings of the British Machine Vision Conference 2005, pp. 10.1-10.10. British Machine Vision Association, Oxford (2005). https://doi.org/10.5244/C.19.10
Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001). https://doi.org/10.1007/PL00013269
Fitzgibbon, A.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I (2001). https://doi.org/10.1109/CVPR.2001.990465, ISSN 1063-6919
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016)
Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on images through deep learning, pp. 4855–4864 (2019)
Liao, K., Lin, C., Zhao, Y., Gabbouj, M.: DR-GAN: automatic radial distortion rectification using conditional GAN in real-time. IEEE Trans. Circ. Syst. Video Technol. 30(3), 725–733 (2020). https://doi.org/10.1109/TCSVT.2019.2897984
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J., Haro, G.: Deep single image camera calibration with radial distortion, pp. 11817–11825 (2019)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv:1711.05101 [cs, math] (2019). arXiv: 1711.05101
Lutz, S., Davey, M., Smolic, A.: Deep convolutional neural networks for estimating lens distortion parameters. Session 2: Deep Learning for Computer Vision (2019). https://doi.org/10.21427/yg8t-6g48
Paszke, A.,et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)
Ranjan, A., et al.: Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation, pp. 12240–12249 (2019)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016)
Rong, J., Huang, S., Shang, Z., Ying, X.: Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 35–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_3
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Shi, Y., Zhang, D., Wen, J., Tong, X., Ying, X., Zha, H.: Radial lens distortion correction by adding a weight layer with inverted foveal models to convolutional neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1–6 (2018). https://doi.org/10.1109/ICPR.2018.8545218, ISSN 1051-4651
Strand, R., Hayman, E.: Correcting radial distortion by circle fitting. In: Proceedings of the British Machine Vision Conference 2005, pp. 9.1-9.10. British Machine Vision Association, Oxford (2005). https://doi.org/10.5244/C.19.9
Tang, Z., Grompone von Gioi, R., Monasse, P., Morel, J.M.: A precision analysis of camera distortion models. IEEE Trans. Image Process. 26(6), 2694–2704 (2017). https://doi.org/10.1109/TIP.2017.2686001
Ullman, S., Brenner, S.: The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 203(1153), 405–426 (1979). https://doi.org/10.1098/rspb.1979.0006, https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1979.0006
Xue, Z.C., Xue, N., Xia, G.S.: Fisheye distortion rectification from deep straight lines. arXiv:2003.11386 [cs] (2020). arXiv: 2003.11386
Xue, Z., Xue, N., Xia, G.S., Shen, W.: Learning to calibrate straight lines for Fisheye image rectification, pp. 1643–1651 (2019)
Yin, X., Wang, X., Yu, J., Zhang, M., Fua, P., Tao, D.: FishEyeRecNet: a multi-context collaborative deep network for Fisheye image rectification, pp. 469–484 (2018)
Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose, pp. 1983–1992 (2018)
Ying, X., Hu, Z., Zha, H.: Fisheye lenses calibration using straight-line spherical perspective projection constraint. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 61–70. Springer, Heidelberg (2006). https://doi.org/10.1007/11612704_7
Zhao, H., Shi, Y., Tong, X., Ying, X., Zha, H.: A simple yet effective pipeline for radial distortion correction. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 878–882 (2020). https://doi.org/10.1109/ICIP40778.2020.9191107, ISSN 2381-8549
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised Learning of depth and ego-motion from video, pp. 1851–1858 (2017)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Theiß, C., Denzler, J. (2022). Towards a Unified Benchmark for Monocular Radial Distortion Correction and the Importance of Testing on Real-World Data. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-09037-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09036-3
Online ISBN: 978-3-031-09037-0
eBook Packages: Computer ScienceComputer Science (R0)