Skip to main content

Analysing the Impact of Vibrations on Smart Wheelchair Systems and Users

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Mechanical vibrations due to uneven terrains can significantly impact the accuracy of computer vision systems installed on any moving vehicle. In this study, we investigate the impact of mechanical vibrations induced using artificial bumps in a controlled environment on the performance of smart computer vision systems installed on an Electrical powered Wheelchair (EPW). Besides, the impact of the vibrations on the user’s health and comfort is quantified using the vertical acceleration of an Inertial Measurement Unit (IMU) sensor according to the ISO standard 2631. The proposed smart computer vision system is a semantic segmentation based on deep learning for pixels classification that provides environmental cues for visually impaired users to facilitate safe and independent navigation. In addition, it provides the EPW user with the estimated distance to objects of interest. Results show that a high level of vibrations can negatively impact the performance of the computer vision system installed on powered wheelchairs. Also, high levels of whole-body vibrations negatively impact the user’s health and comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://doi.org/10.1109/72.279181

    Article  Google Scholar 

  2. Bruno, D.R., Osorio, F.S.: Image classification system based on deep learning applied to the recognition of traffic signs for intelligent robotic vehicle navigation purposes. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017). https://doi.org/10.1109/SBR-LARS-R.2017.8215287

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  5. Ess, A., Schindler, K., Leibe, B., Gool, L.V.: Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. 29(14), 1707–1725 (2010). https://doi.org/10.1177/0278364910365417

    Article  Google Scholar 

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, 13–15 May 2010, vol. 9, pp. 249–256 (2010). http://proceedings.mlr.press/v9/glorot10a.html

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Mechanical vibration and shock - evaluation of human exposure to whole-body vibration - part 1: general requirements. In: Standard, International Organization for Standardization, Geneva, CH, May 1997 (1997)

    Google Scholar 

  9. Jiang, H., Zhang, T., Wachs, J.P., Duerstock, B.S.: Enhanced control of a wheelchair-mounted robotic manipulator using 3-d vision and multimodal interaction. Comput. Vis. Image Understand. 149, 21–31 (2016). https://doi.org/10.1016/j.cviu.2016.03.015,https://www.sciencedirect.com/science/article/pii/S1077314216300066, special issue on Assistive Computer Vision and Robotics - "Assistive Solutions for Mobility, Communication and HMI"

  10. Marichal, G.N., Tomás-Rodríguez, M., Hernández, Á., Castillo-Rivera, S., Campoy, P.: Vibration reduction for vision systems on board UAV using a neuro-fuzzy controller

    Google Scholar 

  11. Miyamoto, R., et al.: Vision-based road-following using results of semantic segmentation for autonomous navigation. In: 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), pp. 174–179 (2019). https://doi.org/10.1109/ICCE-Berlin47944.2019.8966198

  12. Mohamed, E., Sirlantzis, K., Howells, G.: Indoor/outdoor semantic segmentation using deep learning for visually impaired wheelchair users. IEEE Access 9, 147914–147932 (2021). https://doi.org/10.1109/ACCESS.2021.3123952

    Article  Google Scholar 

  13. Mohamed, E., Sirlantzis, K., Howells, G., Dib, J.: Investigation of vibration and user comfort for powered wheelchairs. IEEE Sens. Lett. 6(2), 1–4 (2022). https://doi.org/10.1109/LSENS.2022.3147740

    Article  Google Scholar 

  14. Periu, C., Mohsenimanesh, A., Laguë, C., McLaughlin, N.: Isolation of vibrations transmitted to a lidar sensor mounted on an agricultural vehicle to improve obstacle detection. Canadian Biosyst. Eng. 55 (2013)

    Google Scholar 

  15. Quintero, C.P., Ramirez, O., Jägersand, M.: Vibi: assistive vision-based interface for robot manipulation. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4458–4463 (2015). https://doi.org/10.1109/ICRA.2015.7139816

  16. Rashed, H., El Sallab, A., Yogamani, S., ElHelw, M.: Motion and depth augmented semantic segmentation for autonomous navigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Assistive Devices for empowering dis-Abled People through robotic Technologies (ADAPT) project. ADAPT is selected for funding by the INTERREG VA France (Channel) England Programme which is co-financed by the European Regional Development Fund (ERDF). The European Regional Development Fund (ERDF) is one of the main financial instruments of the European Unions (EU) cohesion policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhassan Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohamed, E., Sirlantzis, K., Howells, G. (2022). Analysing the Impact of Vibrations on Smart Wheelchair Systems and Users. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics