Abstract
Accurate retinal vessel segmentation is an important task for many computer-aided diagnosis systems. Yet, it is still a challenging problem due to the complex vessel structures of an eye. Numerous vessel segmentation methods have been proposed recently, however more research is needed to deal with poor segmentation of thin and tiny vessels. To address this, we propose a new deep learning pipeline combining the efficiency of residual dense net blocks and, residual squeeze and excitation blocks. We validate experimentally our approach on three datasets and show that our pipeline outperforms current state of the art techniques on the sensitivity metric relevant to assess capture of small vessels.
Keywords
- Retinal image
- Vessel segmentation
- Eye
This is a preview of subscription content, access via your institution.
Buying options


References
Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLOS ONE 7(3), 1–12 (03 2012)
Câmara Neto, L., Ramalho, G.L., Rocha Neto, J.F., Veras, R.M., Medeiros, F.N.: An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst. Appl. 78, 182–192 (2017)
Farrah, T.E., Dhillon, B., Keane, P.A., Webb, D.J., Dhaun, N.: The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons. Kidney Int. 98(2), 323–342 (2020)
Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)
Guo, C., Szemenyei, M., Yi, Y., Zhou, W., Bian, H.: Residual spatial attention network for retinal vessel segmentation. In: Yang, H., Pasupa, K., Leung, A.C.S., Kwok, J.T., Chan, J.H., King, I. (eds.) Neural Information Processing, pp. 509–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_43
Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., Yi, Y.: Channel attention residual U-Net for retinal vessel segmentation. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1185–1189 (2021)
Guo, C., Szemenyei, M., Pei, Y., Yi, Y., Zhou, W.: SD-UNet: a structured dropout u-net for retinal vessel segmentation. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 439–444 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Kearney, P.M., et al.: Cohort profile: the Irish longitudinal study on ageing. Int. J. Epidemiol. 40(4), 877–884 (2011)
Li, T., Comer, M., Zerubia, J.: A connected-tube MPP model for object detection with application to materials and remotely-sensed images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1323–1327 (2018)
Li, T., Comer, M., Zerubia, J.: An unsupervised retinal vessel extraction and segmentation method based on a tube marked point process model. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1394–1398 (2020)
Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation (2016)
Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., Liu, J.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39(5), 1392–1403 (2020)
Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)
Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophthalmol. Vis. Sci. 50, 2004–10 (2009)
Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158–164 (2018)
Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Wu, Y., et al.: Vessel-Net: retinal vessel segmentation under multi-path supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 264–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_30
Acknowledgments
This work was partly funded by the ADAPT Centre for Digital Content Technology, which is funded under the SFI Research Centres Programme (13/RC/2106_P2) and is cofunded by the European Regional Development Fund, and also partly supported by Department of Nephrology, St. James’s Hospital, Dublin Ireland. Dr. Donal J. Sexton is funded by Health Research Board of Ireland: grant number ARPP-P-2018-011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Karaali, A., Dahyot, R., Sexton, D.J. (2022). DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-09037-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09036-3
Online ISBN: 978-3-031-09037-0
eBook Packages: Computer ScienceComputer Science (R0)