Skip to main content

DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13363)

Abstract

Accurate retinal vessel segmentation is an important task for many computer-aided diagnosis systems. Yet, it is still a challenging problem due to the complex vessel structures of an eye. Numerous vessel segmentation methods have been proposed recently, however more research is needed to deal with poor segmentation of thin and tiny vessels. To address this, we propose a new deep learning pipeline combining the efficiency of residual dense net blocks and, residual squeeze and excitation blocks. We validate experimentally our approach on three datasets and show that our pipeline outperforms current state of the art techniques on the sensitivity metric relevant to assess capture of small vessels.

Keywords

  • Retinal image
  • Vessel segmentation
  • Eye

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-09037-0_17
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-09037-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    https://drive.grand-challenge.org/.

  2. 2.

    https://www.kaggle.com/khoongweihao/chasedb1.

  3. 3.

    https://cecas.clemson.edu/~ahoover/stare/.

  4. 4.

    https://github.com/alikaraali/DR-VNet.

References

  1. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLOS ONE 7(3), 1–12 (03 2012)

    Google Scholar 

  2. Câmara Neto, L., Ramalho, G.L., Rocha Neto, J.F., Veras, R.M., Medeiros, F.N.: An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst. Appl. 78, 182–192 (2017)

    Google Scholar 

  3. Farrah, T.E., Dhillon, B., Keane, P.A., Webb, D.J., Dhaun, N.: The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons. Kidney Int. 98(2), 323–342 (2020)

    Google Scholar 

  4. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)

    Google Scholar 

  5. Guo, C., Szemenyei, M., Yi, Y., Zhou, W., Bian, H.: Residual spatial attention network for retinal vessel segmentation. In: Yang, H., Pasupa, K., Leung, A.C.S., Kwok, J.T., Chan, J.H., King, I. (eds.) Neural Information Processing, pp. 509–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_43

    CrossRef  Google Scholar 

  6. Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., Yi, Y.: Channel attention residual U-Net for retinal vessel segmentation. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1185–1189 (2021)

    Google Scholar 

  7. Guo, C., Szemenyei, M., Pei, Y., Yi, Y., Zhou, W.: SD-UNet: a structured dropout u-net for retinal vessel segmentation. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 439–444 (2019)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    CrossRef  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  12. Kearney, P.M., et al.: Cohort profile: the Irish longitudinal study on ageing. Int. J. Epidemiol. 40(4), 877–884 (2011)

    CrossRef  Google Scholar 

  13. Li, T., Comer, M., Zerubia, J.: A connected-tube MPP model for object detection with application to materials and remotely-sensed images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1323–1327 (2018)

    Google Scholar 

  14. Li, T., Comer, M., Zerubia, J.: An unsupervised retinal vessel extraction and segmentation method based on a tube marked point process model. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1394–1398 (2020)

    Google Scholar 

  15. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    CrossRef  Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation (2016)

    Google Scholar 

  17. Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., Liu, J.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39(5), 1392–1403 (2020)

    CrossRef  Google Scholar 

  18. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)

    CrossRef  Google Scholar 

  19. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophthalmol. Vis. Sci. 50, 2004–10 (2009)

    CrossRef  Google Scholar 

  20. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158–164 (2018)

    CrossRef  Google Scholar 

  21. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    CrossRef  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  23. Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    CrossRef  Google Scholar 

  24. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    CrossRef  Google Scholar 

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    CrossRef  Google Scholar 

  26. Wu, Y., et al.: Vessel-Net: retinal vessel segmentation under multi-path supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 264–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_30

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the ADAPT Centre for Digital Content Technology, which is funded under the SFI Research Centres Programme (13/RC/2106_P2) and is cofunded by the European Regional Development Fund, and also partly supported by Department of Nephrology, St. James’s Hospital, Dublin Ireland. Dr. Donal J. Sexton is funded by Health Research Board of Ireland: grant number ARPP-P-2018-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karaali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Karaali, A., Dahyot, R., Sexton, D.J. (2022). DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)