Skip to main content

Constructing All Qutrit Controlled Clifford+T gates in Clifford+T

  • 87 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13354)

Abstract

For a number of useful quantum circuits, qudit constructions have been found which reduce resource requirements compared to the best known or best possible qubit construction. However, many of the necessary qutrit gates in these constructions have never been explicitly and efficiently constructed in a fault-tolerant manner. We show how to exactly and unitarily construct any qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates and without using ancillae. The T-count to do so is polynomial in the number of controls k, scaling as \(O(k^{3.585})\). With our results we can construct ancilla-free Clifford+T implementations of multiple-controlled T gates as well as all versions of the qutrit multiple-controlled Toffoli, while the analogous results for qubits are impossible. As an application of our results, we provide a procedure to implement any ternary classical reversible function on n trits as an ancilla-free qutrit unitary using \(O(3^n n^{3.585})\) T gates.

Keywords

  • Qutrits
  • Gate Synthesis
  • Clifford+T

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-09005-9_3
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-09005-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Notes

  1. 1.

    https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_control_Clifford_T.

References

  1. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). https://doi.org/10.1103/physreva.52.3457

    CrossRef  Google Scholar 

  2. Basu, S., Mandal, S.B., Chakrabarti, A., Sur-Kolay, S., Choudhury, A.K.: An efficient synthesis method for ternary reversible logic. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2306–2309 (2016). https://doi.org/10.1109/ISCAS.2016.7539045

  3. Beverland, M., Campbell, E., Howard, M., Kliuchnikov, V.: Lower bounds on the non-Clifford resources for quantum computations. Quantum Sci. Technol. 5(3), 035009 (2020). https://doi.org/10.1088/2058-9565/ab8963

  4. Blok, M.S., et al.: Quantum Information Scrambling on a Superconducting Qutrit Processor. Phys. Rev. X 11, 021010 (2021). https://doi.org/10.1103/PhysRevX.11.021010

    CrossRef  Google Scholar 

  5. Bocharov, A.: A note on optimality of quantum circuits over metaplectic basis. Quantum Inf. Comput. 18 (2016). https://doi.org/10.26421/QIC18.1-2-1

  6. Bocharov, A., Cui, S., Roetteler, M., Svore, K.: Improved quantum ternary arithmetics. Quantum Inf. Comput. 16, 862–884 (2016). https://doi.org/10.26421/QIC16.9-10-8

  7. Bocharov, A., Cui, X., Kliuchnikov, V., Wang, Z.: Efficient topological compilation for a weakly integral anyonic model. Phys. Rev. A 93(1) (2016). https://doi.org/10.1103/physreva.93.012313

  8. Bocharov, A., Roetteler, M., Svore, K.M.: Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, 012306 (2017). https://doi.org/10.1103/PhysRevA.96.012306

    CrossRef  Google Scholar 

  9. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005). https://doi.org/10.1103/PhysRevA.71.022316

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Campbell, E.T.: Enhanced fault-tolerant quantum computing in \(d\)-level systems. Phys. Rev. Lett. 113, 230501 (2014). https://doi.org/10.1103/PhysRevLett.113.230501

    CrossRef  Google Scholar 

  11. Campbell, E.T., Anwar, H., Browne, D.E.: Magic-state distillation in all prime dimensions using quantum reed-muller codes. Phys. Rev. X 2, 041021 (2012). https://doi.org/10.1103/PhysRevX.2.041021

    CrossRef  Google Scholar 

  12. Cozzolino, D., Da Lio, B., Bacco, D., Oxenløwe, L.K.: High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038 (2019). https://doi.org/10.1002/qute.201900038

  13. Cui, S.X., Wang, Z.: Universal quantum computation with metaplectic anyons. J. Math. Phys. 56(3), 032202 (2015). https://doi.org/10.1063/1.4914941

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Datta, K., Sengupta, I., Rahaman, H.: Group theory based reversible logic synthesis. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC), pp. 1–4 (2012). https://doi.org/10.1109/CODEC.2012.6509346

  15. Di, Y.M., Wei, H.R.: Synthesis of multivalued quantum logic circuits by elementary gates. Phys. Rev. A 87, 012325 (2013). https://doi.org/10.1103/PhysRevA.87.012325

    CrossRef  Google Scholar 

  16. Fan, F., Yang, G., Yang, G., Hung, W.N.N.: A synthesis method of quantum reversible logic circuit based on elementary qutrit quantum logic gates. J. Circ. Syst. Comput. 24(08), 1550121 (2015). https://doi.org/10.1142/S0218126615501212

    CrossRef  Google Scholar 

  17. Giles, B., Selinger, P.: Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87(3) (2013). https://doi.org/10.1103/physreva.87.032332

  18. Glaudell, A., J. Ross, N., van de Wetering, J., Yeh, L.: Qutrit metaplectic gates are a subset of Clifford+T. In: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik (In press). https://arxiv.org/abs/2202.09235

  19. Glaudell, A.N., Ross, N.J., Taylor, J.M.: Canonical forms for single-qutrit Clifford+T operators. Ann. Phys. 406, 54–70 (2019). https://doi.org/10.1016/j.aop.2019.04.001

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Gokhale, P., Baker, J.M., Duckering, C., Brown, N.C., Brown, K.R., Chong, F.T.: Asymptotic improvements to quantum circuits via qutrits. In: Proceedings of the 46th International Symposium on Computer Architecture, June 2019. https://doi.org/10.1145/3307650.3322253

  21. Gong, X., Wang, Q.: Equivalence of Local Complementation and Euler Decomposition in the Qutrit ZX-calculus, April 2017

    Google Scholar 

  22. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. Quantum Info. Comput. 14(15–16), 1261–1276 (2014). https://doi.org/10.5555/2685179.2685180

  23. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Chaos Solitons Fractals 10(10), 1749–1758 (1999). https://doi.org/10.1016/s0960-0779(98)00218-5

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Haghparast, M., Wille, R., Monfared, A.T.: Towards quantum reversible ternary coded decimal adder. Quantum Inf. Process. 16(11), 1–25 (2017). https://doi.org/10.1007/s11128-017-1735-3

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017). https://doi.org/10.1103/PhysRevLett.118.090501

    CrossRef  Google Scholar 

  26. Howard, M., Vala, J.: Qudit versions of the qubit \(\pi /8\) gate. Phys. Rev. A 86, 022316 (2012). https://doi.org/10.1103/PhysRevA.86.022316

    CrossRef  Google Scholar 

  27. Ionicioiu, R., Spiller, T., Munro, W.: generalized toffoli gates using qudit catalysis. Phys. Rev. A 80, 012312 (2009). https://doi.org/10.1103/PhysRevA.80.012312

    MathSciNet  CrossRef  Google Scholar 

  28. Khan, F.S., Perkowski, M.: Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition. Theor. Comput. Sci. 367(3), 336–346 (2006). https://doi.org/10.1016/j.tcs.2006.09.006

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Khan, M., Perkowski, M.: Genetic algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 2, pp. 2194–2201 (2004). https://doi.org/10.1109/CEC.2004.1331169

  30. Khan, M.H.A., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with partially-look-ahead carry. J. Syst. Archit. 53(7), 453–464 (2007). https://doi.org/10.1016/j.sysarc.2007.01.007

    CrossRef  Google Scholar 

  31. Kiktenko, E.O., Nikolaeva, A.S., Xu, P., Shlyapnikov, G.V., Fedorov, A.K.: Scalable quantum computing with qudits on a graph. Phys. Rev. A 101(2) (2020). https://doi.org/10.1103/physreva.101.022304

  32. Kim, T., Choi, B.S.: Efficient decomposition methods for controlled-rn using a single ancillary qubit. Sci. Rep. 8(1), 5445 (2018). https://doi.org/10.1038/s41598-018-23764-x

    CrossRef  Google Scholar 

  33. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Info. Comput. 13(7–8), 607–630 (2013)

    MathSciNet  Google Scholar 

  34. Kole, A., Rani, P.M.N., Datta, K., Sengupta, I., Drechsler, R.: Exact synthesis of ternary reversible functions using ternary toffoli gates. In: 2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL), pp. 179–184 (2017). https://doi.org/10.1109/ISMVL.2017.51

  35. Kole, D.K., Rahaman, H., Das, D.K., Bhattacharya, B.B.: Optimal reversible logic circuit synthesis based on a hybrid DFS-BFS technique. In: 2010 International Symposium on Electronic System Design, pp. 208–212 (2010). https://doi.org/10.1109/ISED.2010.47

  36. Lanyon, B.P., et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134–140 (2009). https://doi.org/10.1038/nphys1150

  37. Mandal, S.B., Chakrabarti, A., Sur-Kolay, S.: Quantum ternary circuit synthesis using projection operations (2012). https://doi.org/10.48550/ARXIV.1205.2390, https://arxiv.org/abs/1205.2390

  38. Maslov, D.: Advantages of using relative-phase toffoli gates with an application to multiple control toffoli optimization. Phys. Rev. A 93, 022311 (2016). https://doi.org/10.1103/PhysRevA.93.022311

    CrossRef  Google Scholar 

  39. Maslov, D.: Optimal and asymptotically optimal NCT reversible circuits by the gate types. Quantum Inf. Comput. 16(13 & 14) (2016). https://doi.org/10.26421/qic16.13-14

  40. Meuli, G., Soeken, M., Roetteler, M., De Micheli, G.: Enumerating optimal quantum circuits using spectral classification. In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2020). https://doi.org/10.1109/ISCAS45731.2020.9180792

  41. Moraga, C.: On some basic aspects of ternary reversible and quantum computing. In: Proceedings of the 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pp. 178–183. ISMVL 2014, IEEE Computer Society, USA (2014). https://doi.org/10.1109/ISMVL.2014.39

  42. Moraga, C.: Quantum p-valued toffoli and deutsch gates with conjunctive or disjunctive mixed polarity control. In: 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), pp. 241–246 (2016). https://doi.org/10.1109/ISMVL.2016.22

  43. Mosca, M., Mukhopadhyay, P.: A polynomial time and space heuristic algorithm for T-count. Quantum Sci. Technol. 7(1), 015003 (2021). https://doi.org/10.1088/2058-9565/ac2d3a

    CrossRef  Google Scholar 

  44. Prakash, S.: Magic state distillation with the ternary golay code. Proc. R. Soc. A Math. Phys. Eng. Sci. 476(2241), 20200187 (2020). https://doi.org/10.1098/rspa.2020.0187

    MathSciNet  CrossRef  MATH  Google Scholar 

  45. Prakash, S., Jain, A., Kapur, B., Seth, S.: Normal form for single-qutrit Clifford+T operators and synthesis of single-qutrit gates. Phys. Rev. A 98(3) (2018). https://doi.org/10.1103/physreva.98.032304

  46. Ralph, T.C., Resch, K.J., Gilchrist, A.: Efficient toffoli gates using qudits. Phys. Rev. A 75(2) (2007). https://doi.org/10.1103/physreva.75.022313

  47. Rani, P.M.N., Datta, K.: Improved ternary reversible logic synthesis using group theoretic approach. J. Circuits Syst. Comput. 29(12), 2050192 (2020). https://doi.org/10.1142/S0218126620501923

    CrossRef  Google Scholar 

  48. Rani, P.M.N., Kole, A., Datta, K., Chakrabarty, A.: Realization of ternary reversible circuits using improved gate library. Procedia Comput. Sci. 93, 153–160 (2016). https://doi.org/10.1016/j.procs.2016.07.195

  49. Ringbauer, M., et al.: A universal qudit quantum processor with trapped ions (2021). https://arxiv.org/abs/2109.06903

  50. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87(4), 042302 (2013). https://doi.org/10.1103/PhysRevA.87.042302

    CrossRef  Google Scholar 

  51. Shende, V.V., Markov, I.L.: On the CNOT-Cost of TOFFOLI Gates. Quantum Info. Comput. 9(5), 461–486 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Song, G., Klappenecker, A.: Optimal realizations of simplified toffoli gates. Quantum Info. Comput. 4(5), 361–372 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Wang, Y., Hu, Z., Sanders, B.C., Kais, S.: Qudits and high-dimensional quantum computing. Front. Phys. 8, 479 (2020). https://doi.org/10.3389/fphy.2020.589504

    CrossRef  Google Scholar 

  54. Yang, G., Xie, F., Song, X., Hung, W., Perkowski, M.: A constructive algorithm for reversible logic synthesis. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 2416–2421 (2006). https://doi.org/10.1109/CEC.2006.1688608

  55. Ye, B., Zheng, Z.F., Zhang, Y., Yang, C.P.: Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling \(n-1\) microwave photonic qubits. Opt. Exp. 26(23), 30689 (2018). https://doi.org/10.1364/oe.26.030689

    CrossRef  Google Scholar 

  56. Yurtalan, M.A., Shi, J., Kononenko, M., Lupascu, A., Ashhab, S.: Implementation of a walsh-hadamard gate in a superconducting qutrit. Phys. Rev. Lett. 125, 180504 (2020). https://doi.org/10.1103/PhysRevLett.125.180504

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Andrew Glaudell and Neil J. Ross for discussions regarding the consequences of our results and Andrew Glaudell specifically for pointing out Eq. (23). We additionally wish to thank Shuxiang Cao and Razin Shaikh for assistance in preparing the figures in an early draft of this paper. JvdW is supported by an NWO Rubicon personal fellowship. LY is supported by an Oxford - Basil Reeve Graduate Scholarship at Oriel College with the Clarendon Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Yeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yeh, L., van de Wetering, J. (2022). Constructing All Qutrit Controlled Clifford+T gates in Clifford+T. In: Mezzina, C.A., Podlaski, K. (eds) Reversible Computation. RC 2022. Lecture Notes in Computer Science, vol 13354. Springer, Cham. https://doi.org/10.1007/978-3-031-09005-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09005-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09004-2

  • Online ISBN: 978-3-031-09005-9

  • eBook Packages: Computer ScienceComputer Science (R0)