Skip to main content

The \(\aleph \)-Calculus

A Declarative Model of Reversible Programming

  • 81 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13354)

Abstract

A novel model of reversible computing, the \(\aleph \)-calculus, is introduced. It is declarative, reversible-Turing complete, and has a local term-rewriting semantics. Unlike previously demonstrated reversible term-rewriting systems, it does not require the accumulation of history data. Terms in the \(\aleph \)-calculus, in combination with the program definitions, encapsulate all program state. An interpreter was also written.

Keywords

  • Reversible Computing
  • Term-Rewriting
  • Declarative Paradigm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-09005-9_11
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-09005-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Notes

  1. 1.

    No such constraint need be applied to invalid computational states [4].

  2. 2.

    The name of the calculus is inspired by the Greek meaning ‘not forgotten’,

  3. 3.

    In the examples in Sect. 2 the reader may notice this is violated. This is for programmer convenience, and must be resolved manually or by the compiler.

  4. 4.

    The requirement of halting, combined with computational inertia, ensures each sub-multiterm takes on a unique state at production and before consumption.

  5. 5.

    https://github.com/hannah-earley/alethe-repl.

References

  1. Abramsky, S.: A structural approach to reversible computation. Theoret. Comput. Sci. 347(3), 441–464 (2005)

    MathSciNet  CrossRef  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    MathSciNet  CrossRef  Google Scholar 

  3. Di Pierro, A., Hankin, C., Wiklicky, H.: Reversible combinatory logic. Math. Struct. Comput. Sci. 16(4), 621–637 (2006)

    MathSciNet  CrossRef  Google Scholar 

  4. Frank, M.P.: Foundations of generalized reversible computing. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59936-6_2

    CrossRef  Google Scholar 

  5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    MathSciNet  CrossRef  Google Scholar 

  6. Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: 1st International Conference on Formal Structures for Computation and Deduction (2016)

    Google Scholar 

  7. Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53(11–12), 840–856 (1929)

    CrossRef  Google Scholar 

  8. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the invaluable help and support of her PhD supervisor, Gos Micklem. This work was supported by the Engineering and Physical Sciences Research Council, project reference 1781682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Earley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Earley, H. (2022). The \(\aleph \)-Calculus. In: Mezzina, C.A., Podlaski, K. (eds) Reversible Computation. RC 2022. Lecture Notes in Computer Science, vol 13354. Springer, Cham. https://doi.org/10.1007/978-3-031-09005-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09005-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09004-2

  • Online ISBN: 978-3-031-09005-9

  • eBook Packages: Computer ScienceComputer Science (R0)