Skip to main content

Brain Tumor Segmentation Using Two-Stage Convolutional Neural Network for Federated Evaluation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

A deep learning method is proposed for brain tumor segmentation using a two-stage encoder-decoder convolutional neural network (CNN). To improve the generalization of the proposed network for federated evaluation, we propose a two-stage encoder-decoder CNN that performs coarse segmentation at stage-I and fine segmentation at stage-II. Stage-I consists of an ensemble of three predictions on the orthogonal slices of a subject. In stage-II, the predictions of the first stage are used to crop the region of interest consisting of the tumor region and a fine grain segmentation is performed on the cropped image. A single ResUNet was used for stage-I and seven different networks were used for stage-II. Heavy data augmentation consisting of geometric transformation and random contrast was used to avoid overfitting and improve the generalization. The mean dice scores on 21 imaging sites evaluated in a federated manner achieved dice scores of 0.8659, 0.7708, and 0.7714 for the whole tumor, tumor core, and enhancing tumor respectively. The method ranked second in the federated evaluation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    code repository: https://github.com/kamleshpawar17/FeTS2021

References

  1. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiation Oncol. Biol. Phys. 59, 300–312 (2004)

    Article  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4, 170117 (2017)

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286 (2017)

    Google Scholar 

  5. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993 (2015)

    Article  Google Scholar 

  6. Pati, S., et al.: The federated tumor segmentation (FeTS) challenge. arXiv preprint arXiv:2105.05874 (2021)

  7. Reina, G.A., et al.: OpenFL: An open-source framework for Federated Learning. arXiv preprint arXiv:2105.06413 (2021)

  8. LeCun, Y.A., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  9. Pawar, K., Zhaolin Chen, N., Shah, J., Egan, G.F.: An ensemble of 2D convolutional neural network for 3D brain tumor segmentation. In: Crimi, Alessandro, Bakas, Spyridon (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part I, pp. 359–367. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_34

    Chapter  Google Scholar 

  10. Pawar, K., Chen, Z., Shah, N.J., Egan, G.: Residual encoder and convolutional decoder neural network for glioma segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_23

    Chapter  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 3–11. Springer (2018)

    Google Scholar 

  13. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep Residual Learning for Image Recognition. Proc Cvpr Ieee 770–778 (2016)

    Google Scholar 

  15. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. arXiv preprint arXiv:1707.01629 (2017)

  16. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708 (2017)

    Google Scholar 

  18. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR

    Google Scholar 

  19. Yakubovskiy, P.: Segmentation Models Pytorch. GitHub Repository (2020). https://github.com/qubvel/segmentation_models.pytorch

  20. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV), pp. 464–472. IEEE (2017)

    Google Scholar 

  21. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 1965–1976. SPIE (2005)

    Google Scholar 

  22. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  23. Alzubaidi, L., Fadhel, M.A., Al-Shamma, O., Jinglan Zhang, J., Santamaría, Y.D., Oleiwi, S.R.: Towards a better understanding of transfer learning for medical imaging: a case study. Appl. Sci. 10(13), 4523 (2020)

    Article  Google Scholar 

  24. Pawar, K., Chen, Z., Shah, N.J., Egan, G.F.: A deep learning framework for transforming image reconstruction into pixel classification. IEEE Access 7, 177690–177702 (2019)

    Article  Google Scholar 

  25. Pawar, K., Zhaolin Chen, N., Shah, J., Egan, G.F.: Suppressing motion artefacts in MRI using an Inception‐ResNet network with motion simulation augmentation. NMR Biomed. 35(4), e4225 (2019). https://doi.org/10.1002/nbm.4225

    Article  Google Scholar 

  26. Pawar, K., Egan, G.F., Chen, Z.: Domain knowledge augmentation of parallel MR image reconstruction using deep learning. Comput, Med. Imaging Graphics 92, 101968 (2021). https://doi.org/10.1016/j.compmedimag.2021.101968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawar, K., Zhong, S., Chen, Z., Egan, G. (2022). Brain Tumor Segmentation Using Two-Stage Convolutional Neural Network for Federated Evaluation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics