Skip to main content

Radiogenomic Prediction of MGMT Using Deep Learning with Bayesian Optimized Hyperparameters

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Glioblastoma (GBM) is the most aggressive primary brain tumor. The standard radiotherapeutic treatment for newly diagnosed GBM patients is Temozolomide (TMZ). O6-methylguanine-DNA-methyltransferase (MGMT) gene methylation status is a genetic biomarker for patient response to the treatment and is associated with a longer survival time. The standard method of assessing genetic alternation is surgical resection which is invasive and time-consuming. Recently, imaging genomics has shown the potential to associate imaging phenotype with genetic alternation. Imaging genomics provides an opportunity for noninvasive assessment of treatment response. Accordingly, we propose a convolutional neural network (CNN) framework with Bayesian optimized hyperparameters for the prediction of MGMT status from multimodal magnetic resonance imaging (mMRI). The goal of the proposed method is to predict the MGMT status noninvasively. Using the RSNA-MICCAI dataset, the proposed framework achieves an area under the curve (AUC) of 0.718 and 0.477 for validation and testing phase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom, Q.T., et al.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro. Oncol. 21(Suppl 5), 1–100 (2019)

    Article  Google Scholar 

  2. Liu, D., et al.: Imaging-genomics in glioblastoma: combining molecular and imaging signatures. Front. Oncol. 11, 2666 (2021)

    Google Scholar 

  3. Nam, J.Y., De Groot, J.F.: Treatment of glioblastoma. J. Oncol. Pract. 13(10), 629–638 (2017)

    Article  Google Scholar 

  4. Korfiatis, P., et al.: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med. Phys. 43(6), 2835–2844 (2016)

    Article  Google Scholar 

  5. Hajianfar, G., et al.: Noninvasive O6 Methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg. 132, 140–161 (2019)

    Article  Google Scholar 

  6. Kanas, V.G., et al.: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput. Methods Programs Biomed. 140, 249–257 (2017)

    Article  Google Scholar 

  7. Sasaki, T., et al.: Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  8. Korfiatis, P., Kline, T.L., Lachance, D.H., Parney, I.F., Buckner, J.C., Erickson, B.J.: Residual deep convolutional neural network predicts MGMT methylation status. J. Digital Imaging 30(5), 622–628 (2017). https://doi.org/10.1007/s10278-017-0009-z

    Article  Google Scholar 

  9. Chang, P., et al.:Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 39(7), 1201–1207 (2018)

    Google Scholar 

  10. Calabrese, E., et al.: A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  11. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. https://arxiv.org/abs/2107.02314. Accessed 09 Aug 2021

  12. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging. 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  13. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data. 4, 170–171 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  14. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. In: The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  15. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. In: The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  16. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model Anal. Health Inform. Bioinform. 5, 1–6 (2016)

    Article  Google Scholar 

  17. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for metamodel validation with recommendations for evolutionary computation. Evol. Comput. 20, 249–275 (2012)

    Article  Google Scholar 

  19. Alibrahim, H., Ludwig, S.A.: Hyperparameter optimization: comparing genetic algorithm against grid search and Bayesian optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland (2021). https://doi.org/10.1109/CEC45853.2021.9504761

  20. Dewancker, I., McCourt, M.J., Clark, S.C.: Bayesian Optimization for Machine Learning : A Practical Guidebook. arXiv:abs/1612.04858 (2016)

  21. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: 24th International Conference on Neural Information Processing Systems (NIPS 2011), Red Hook, NY, USA (2011)

    Google Scholar 

  22. Frazier, P.: A Tutorial on Bayesian Optimization. arXiv:abs/1807.02811 (2018)

  23. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  24. Borgli, R.J., Kvale Stensland, H., Riegler, M.A., Halvorsen, P.: Automatic hyperparameter optimization for transfer learning on medical image datasets using Bayesian optimization. In: 13th International Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway (2019)

    Google Scholar 

  25. Fraccaroli, M., Lamma, E., Riguzzi, F.: Automatic setting of DNN hyper-parameters by mixing Bayesian optimization and tuning rules. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12565, pp. 477–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_43

    Chapter  Google Scholar 

  26. Guillemot, M., Heusèle, C., Korichi, R., Schnebert, S.: Maxime petit and liming Chen: tuning neural network hyperparameters through Bayesian optimization and Application to cosmetic formulation data (2019)

    Google Scholar 

  27. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 2951–2959 (2012)

    Google Scholar 

  28. Liu, D., et al.: Imaging-genomics in glioblastoma: combining molecular and imaging signatures. Front. Oncol. 11, 2666–2021 (2021). https://www.frontiersin.org/article/10.3389/fonc.2021.699265

  29. Hajianfar, G., et al.: Noninvasive O6 Methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg. 132, 140–161 (2019). https://doi.org/10.1016/j.wneu.2019.08.232

  30. Korfiatis, P., et al.: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med. Phys. 43(6), 2835–2844 (2016). https://doi.org/10.1118/1.4948668

  31. RSNA-MICCAI Brain Tumor Radiogenomic Classification-Kaggle. https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification. Accessed 09 Aug 2021

Download references

Acknowledgements

We acknowledge partial support from National Institutes of Health grant # R01 EB020683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan M. Iftekharuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farzana, W., Temtam, A.G., Shboul, Z.A., Rahman, M.M., Sadique, M.S., Iftekharuddin, K.M. (2022). Radiogenomic Prediction of MGMT Using Deep Learning with Bayesian Optimized Hyperparameters. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics