Skip to main content

Brain Tumor Segmentation with Self-supervised Enhance Region Post-processing

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

In this paper, we extend the previous research works on the robust multi-sequences segmentation methods which allows to consider all available information from MRI scans by the composition of T1, T1C, T2 and T2-FLAIR sequences. It is based on the clinical radiology hypothesis and presents an efficient approach to combining and matching 3D methods to search for areas of comprised the GD-enhancing tumor in order to significantly improve the model’s performance of the particular applied numerical problem of brain tumor segmentation.

Proposed in this paper method also demonstrates strong improvement on the segmentation problem. This conclusion was done with respect to Dice and Hausdorff metric, Sensitivity and Specificity compare to identical training/test procedure based only on any single sequence and regardless of the chosen neural network architecture. We achieved on the test set of 0.866, 0.921 and 0.869 for ET, WT, and TC Dice scores.

Obtained results demonstrate significant performance improvement while combining several 3D approaches for considered tasks of brain tumor segmentation. In this work we provide the comparison of various 3D and 2D approaches, pre-processing to self-supervised clean data, post-processing optimization methods and the different backbone architectures.

The reported study was funded by RFBR according to the research project No 19-29-01103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ge, C., Gu, I.Y., Store Jakola, A., Yang, J.: Cross-modality augmentation of brain MR images using a novel pairwise generative adversarial network for enhanced glioma classification In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 559–563 (2019)

    Google Scholar 

  2. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  3. Varsavsky, T., Eaton-Rosen, Z., Sudre, C.H., Nachev, P., Cardoso, M.J.: PIMMS: permutation invariant multi-modal segmentation, CoRR, vol. abs/1807.06537 (2018). http://arxiv.org/abs/1807.06537

  4. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. arXiv:1907.11150 (2019)

  5. Letyagin, A.Y., et al.: Artificial intelligence for imaging diagnostics in neurosurgery. In: 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 336–337. IEEE-Inst Electrical Electronics Engineers Inc. (2019)

    Google Scholar 

  6. Groza, V., et al.: Data preprocessing via multi-sequences MRI mixture to improve brain tumor segmentation. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 695–704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_62

    Chapter  Google Scholar 

  7. Letyagin, A., et al.: Multi-class brain tumor segmentation via multi-sequences MRI mixture data preprocessing. In: 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB), Novosibirsk, Russia, pp. 185-189 (2020). https://doi.org/10.1109/CSGB51356.2020.9214645

  8. Groza, V., et al.: Brain tumor segmentation and associated uncertainty evaluation using multi-sequences MRI mixture data preprocessing. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 148–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_13

    Chapter  Google Scholar 

  9. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  10. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  11. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  12. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  13. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  14. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. arXiv preprint arXiv:1707.03718 (2017)

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation networks. arXiv preprint arXiv:1709.01507 (2017)

  16. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  17. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  18. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Chapter  Google Scholar 

  19. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  20. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020)

    Article  Google Scholar 

  21. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 184–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_21

    Chapter  Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR according to the research project No 19-29-01103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bair Tuchinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pnev, S. et al. (2022). Brain Tumor Segmentation with Self-supervised Enhance Region Post-processing. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics