Skip to main content

Optimized U-Net for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

We propose an optimized U-Net architecture for a brain tumor segmentation task in the BraTS21 challenge. To find the optimal model architecture and the learning schedule, we have run an extensive ablation study to test: deep supervision loss, Focal loss, decoder attention, drop block, and residual connections. Additionally, we have searched for the optimal depth of the U-Net encoder, number of convolutional channels and post-processing strategy. Our method won the validation phase and took third place in the test phase. We have open-sourced the code to reproduce our BraTS21 submission at the NVIDIA Deep Learning Examples GitHub Repository (https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Segmentation/nnUNet/notebooks/BraTS21.ipynb).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MONAI sliding window implementation was used.

  2. 2.

    https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/nnUNet.

  3. 3.

    https://ngc.nvidia.com/catalog/containers/nvidia:pytorch.

  4. 4.

    https://www.nvidia.com/en-us/data-center/a100.

References

  1. Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205 (2012). https://doi.org/10.1016/j.cancergen.2012.10.009

  2. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  3. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017). https://doi.org/10.1093/bioinformatics/btx188

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  5. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  6. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  7. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  8. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  11. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  12. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 1–9 (2020)

    Google Scholar 

  13. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  14. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  16. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016)

    Google Scholar 

  17. Szegedy, C., et al.: Deep residual learning for image recognition (2014)

    Google Scholar 

  18. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  19. Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: transformers for 3D medical image segmentation (2021)

    Google Scholar 

  20. Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation (2017)

    Google Scholar 

  21. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)

    Google Scholar 

  22. Cox, R., Ashburner, J., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)

    Google Scholar 

  24. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  26. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  27. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  28. Paszke, A., Gross, et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  29. Micikevicius, P., et al.: Mixed precision training (2018)

    Google Scholar 

  30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  31. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts (2017)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Futrega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P. (2022). Optimized U-Net for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics