Skip to main content

Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Accurate and reproducible segmentation of brain tumors from multi-modal magnetic resonance (MR) scans is a pivotal step in clinical practice, as MR imaging is the modality of choice in brain tumor diagnosis and assessment, and incorrectly delineated tumor areas may adversely affect the process of designing the treatment pathway. In this paper, we exploit an end-to-end 3D nnU-Net architecture for this task, and utilize an ensemble of five models using our custom stratification based on the distribution of the necrosis, enhancing tumor, and edema. To improve the segmentation, we benefit from the experience of a senior radiologist captured in a form of several post-processing routines. The experiments obtained for the BraTS’21 training and validation sets show that exploiting such expert knowledge can significantly improve the underlying models, delivering the average Dice score of 0.81977 (enhancing tumor), 0.87837 (tumor core), and 0.92723 (whole tumor). Finally, our algorithm allowed us to take the \(6^\mathrm{th}\) place (out of 1600 participants) in the BraTS’21 Challenge, with the average Dice score over the test data of 0.86317, 0.87987, and 0.92838 for the enhancing tumor, tumor core and whole tumor, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that increasing the number of training epochs would likely improve the capabilities of the model even further.

  2. 2.

    Our team name is Future Processing Healthcare.

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 1–13 (2017). https://doi.org/10.1038/sdata.2017.117

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  5. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629

  6. Bontempi, D., Benini, S., Signoroni, A., Svanera, M., Muckli, L.: Cerebrum: a fast and fully-volumetric convolutional encoder-decoder for weakly-supervised segmentation of brain structures from out-of-the-scanner MRI. Med. Image Anal. 62, 101688 (2020)

    Article  Google Scholar 

  7. Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst. Appl. 38(5), 4998–5004 (2011)

    Article  Google Scholar 

  8. Estienne, T., et al.: Deep learning-based concurrent brain registration and tumor segmentation. Front. Comput. Neurosci. 14, 17 (2020)

    Article  Google Scholar 

  9. Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57(2), 378–390 (2011)

    Article  Google Scholar 

  10. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  11. Isensee, F., Jaeger, P., Kohl, S., Petersen, J., Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 1–9 (2021). https://doi.org/10.1038/s41592-020-01008-z

  12. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  13. Ji, S., Wei, B., Yu, Z., Yang, G., Yin, Y.: A new multistage medical segmentation method based on superpixel and fuzzy clustering. Comput. Math. Methods Med. 2014, 747549:1–747549:13 (2014)

    Google Scholar 

  14. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  15. Korfiatis, P., Kline, T.L., Erickson, B.J.: Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography J. Imaging Res. 2(4), 334–340 (2016)

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  17. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Isgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  18. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  19. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  20. Nalepa, J., et al.: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Med. 102, 101769 (2020)

    Article  Google Scholar 

  21. Ouchicha, C., Ammor, O., Meknassi, M.: Unsupervised brain tumor segmentation from magnetic resonance images. In: Proceedings of the IEEE WINCOM, pp. 1–5 (2019)

    Google Scholar 

  22. Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101, 494–512 (2014)

    Article  Google Scholar 

  23. Saha, S., Bandyopadhyay, S.: MRI brain image segmentation by fuzzy symmetry based genetic clustering technique. In: Proceedings of the IEEE CEC, pp. 4417–4424 (2007)

    Google Scholar 

  24. Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images - a comprehensive review. Egyptian J. Radiol. Nuclear Med. 46(4), 1105–1110 (2015)

    Article  Google Scholar 

  25. Verma, N., Cowperthwaite, M.C., Markey, M.K.: Superpixels in brain MR image analysis. In: Proceedings of the IEEE EMBC, pp. 1077–1080 (2013)

    Google Scholar 

  26. Wu, W., Chen, A.Y.C., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2013). https://doi.org/10.1007/s11548-013-0922-7

    Article  Google Scholar 

  27. Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.Y., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)

    Article  Google Scholar 

  28. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

Download references

Acknowledgment

JN was supported by the Silesian University of Technology funds through the grant for maintaining and developing research potential.

This paper is in memory of Dr. Grzegorz Nalepa, an extraordinary scientist and pediatric hematologist/oncologist at Riley Hospital for Children, Indianapolis, USA, who helped countless patients and their families through some of the most challenging moments of their lives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotowski, K., Adamski, S., Machura, B., Zarudzki, L., Nalepa, J. (2022). Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics