Skip to main content

Generalized Wasserstein Dice Loss, Test-Time Augmentation, and Transformers for the BraTS 2021 Challenge

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Brain tumor segmentation from multiple Magnetic Resonance Imaging (MRI) modalities is a challenging task in medical image computation. The main challenges lie in the generalizability to a variety of scanners and imaging protocols. In this paper, we explore strategies to increase model robustness without increasing inference time. Towards this aim, we explore finding a robust ensemble from models trained using different losses, optimizers, and train-validation data split. Importantly, we explore the inclusion of a transformer in the bottleneck of the U-Net architecture. While we find transformer in the bottleneck performs slightly worse than the baseline U-Net in average, the generalized Wasserstein Dice loss consistently produces superior results. Further, we adopt an efficient test time augmentation strategy for faster and robust inference. Our final ensemble of seven 3D U-Nets with test-time augmentation produces an average dice score of 89.4% and an average Hausdorff 95% distance of 10.0 mm when evaluated on the BraTS 2021 testing dataset. Our code and trained models are publicly available at https://github.com/LucasFidon/TRABIT_BraTS2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.synapse.org/#!Synapse:syn25829067/wiki/610865.

  2. 2.

    https://www.synapse.org/#!Synapse:syn25829067/wiki/.

  3. 3.

    https://github.com/LucasFidon/GeneralizedWassersteinDiceLoss.

  4. 4.

    https://github.com/SamsungLabs/ASAM.

  5. 5.

    https://github.com/clovaai/AdamP.

References

  1. Andres, E.A., et al.: Po-1002 pseudo computed tomography generation using 3D deep learning-application to brain radiotherapy. Radiother. Oncol. 133, S553 (2019)

    Article  Google Scholar 

  2. Andres, E.A., et al.: Dosimetry-driven quality measure of brain pseudo computed tomography generated from deep learning for MRI-only radiotherapy treatment planning. Int. J. Radiat. Oncol.* Biol.* Phys. 108, 813–823 (2020)

    Google Scholar 

  3. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  6. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  7. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  8. Blanc-Durand, P., et al.: Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer. Eur. Radiol. 30(6), 3528–3537 (2020). https://doi.org/10.1007/s00330-019-06630-w

    Article  Google Scholar 

  9. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  11. Ezhov, I., et al.: Neural parameters estimation for brain tumor growth modeling. In: MICCAI 2019. LNCS, vol. 11765, pp. 787–795. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_87

    Chapter  Google Scholar 

  12. Ezhov, I., et al.: Geometry-aware neural solver for fast Bayesian calibration of brain tumor models. arXiv preprint arXiv:2009.04240 (2020)

  13. Fidon, L., et al.: Distributionally robust segmentation of abnormal fetal brain 3D MRI. In: UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 263–273. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_25

    Chapter  Google Scholar 

  14. Fidon, L., et al.: Partial supervision for the feta challenge 2021. arXiv preprint arXiv:2111.02408 (2021)

  15. Fidon, L., et al.: Generalised Wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 64–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_6

    Chapter  Google Scholar 

  16. Fidon, L., Ourselin, S., Vercauteren, T.: Generalized Wasserstein dice score, distributionally robust deep learning, and ranger for brain tumor segmentation: Brats 2020 challenge. arXiv preprint arXiv:2011.01614 (2020)

  17. Fidon, L., Ourselin, S., Vercauteren, T.: SGD with hardness weighted sampling for distributionally robust deep learning. arXiv preprint arXiv:2001.02658 (2020)

  18. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  20. Heo, B., et al.: AdamP: slowing down the slowdown for momentum optimizers on scale-invariant weights. arXiv preprint arXiv:2006.08217 (2020)

  21. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 (2020)

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kofler, F., Berger, C., Waldmannstetter, D., Lipkova, J., Ezhov, I., Tetteh, G., Kirschke, J., Zimmer, C., Wiestler, B., Menze, B.H.: Brats toolkit: translating brats brain tumor segmentation algorithms into clinical and scientific practice. Front. Neurosci. 14, 125 (2020)

    Article  Google Scholar 

  24. Kofler, F., et al.: Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the dice coefficient. arXiv preprint arXiv:2103.06205 (2021)

  25. Kwon, J., Kim, J., Park, H., Choi, I.K.: ASAM: adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks. arXiv preprint arXiv:2102.11600 (2021)

  26. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  27. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  28. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  29. MONAI Consortium: MONAI: Medical open network for AI, March 2020. https://doi.org/10.5281/zenodo.4323058. https://github.com/Project-MONAI/MONAI

  30. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  31. Tilborghs, S., et al.: Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients. arXiv preprint arXiv:2007.15546 (2020)

  32. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  33. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement TRABIT No 765148; Wellcome [203148/Z/16/Z; WT101957], EPSRC [NS/A000049/1; NS/A000027/1]. Tom Vercauteren is supported by a Medtronic/RAEng Research Chair [RCSRF1819734]. Data used in this publication were obtained as part of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge project through Synapse ID (syn25829067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucas Fidon or Suprosanna Shit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fidon, L., Shit, S., Ezhov, I., Paetzold, J.C., Ourselin, S., Vercauteren, T. (2022). Generalized Wasserstein Dice Loss, Test-Time Augmentation, and Transformers for the BraTS 2021 Challenge. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics