Skip to main content

Passive Devices for Upper Limb Training

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Arm and hand motor impairments are frequent after a neurological injury. Motor rehabilitation can improve hand and arm function in many cases, but in the current healthcare climate, the time and resources devoted to physical and occupational therapy after injury are inadequate. This represents an opportunity for technology to be introduced that can complement rehabilitation practices, provide motivating task training and allow remote supervision of exercise training performed in the home. Over the last decades, many research groups have been developing robotic devices for exercise therapy, as well as other methods such as electrical stimulation of muscles or vagus nerve stimulation. Robotic devices tend to be expensive and recent studies have raised some doubt as to whether assistance to movements is always preferable as it can reduce salience and engagement. This chapter reviews the evidence for spontaneous recovery, the means and mechanisms of conventional rehabilitation interventions, the advent of affordable passive devices and other treatment modalities that can be used in combination with passive devices. It is argued that task practice on passive devices, in some cases remotely supervised over the internet or augmented with functional electrical stimulation (FES), is now an affordable and important modality of occupational and physical therapy. Passive devices offer numerous opportunities in the field of neurological rehabilitation to support arm and hand motor recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Neurological disorders: public health challenges. WHO Press, editor. 2006.

    Google Scholar 

  2. Alt Murphy M, Häger CK. Kinematic analysis of the upper extremity after stroke–how far have we reached and what have we grasped? Phys Ther Rev. 2015;

    Google Scholar 

  3. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(5):940–53.

    PubMed  Google Scholar 

  4. Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, et al. Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res. 2005;166(1):126–36.

    PubMed  Google Scholar 

  5. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020.

    Google Scholar 

  6. Chen SY, Winstein CJ. A systematic review of voluntary arm recovery in hemiparetic stroke: critical predictors for meaningful outcomes using the international classification of functioning, disability, and health. J Neurol Phys Ther. 2009;33(1):2–13.

    PubMed  Google Scholar 

  7. Katz DI, Alexander MP, Klein RB. Recovery of arm function in patients with paresis after traumatic brain injury. Arch Phys Med Rehabil. 1998;79(5):488–93.

    CAS  PubMed  Google Scholar 

  8. Kister I, Bacon TE, Chamot E, Salter AR, Cutter GR, Kalina JT, et al. Natural history of multiple sclerosis symptoms. Int J MS Care. 2013;15(3):146–56.

    PubMed  PubMed Central  Google Scholar 

  9. Maynard FM, Bracken MB, Creasey G, Jr JFD, Donovan WH, Ducker TB, et al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997;35(5):266–74.

    Google Scholar 

  10. Pickett GE, Campos-Benitez M, Keller JL, Duggal N. Epidemiology of traumatic spinal cord injury in Canada. Spine. 2006;31(7):799–805.

    PubMed  Google Scholar 

  11. Desrosiers J, Malouin F, Bourbonnais D, Richards CL, Rochette AA, Bravo G. Arm and leg impairments and disabilities after stroke rehabilitation: relation to handicap. Clin Rehabil. 2003;17(6):666–73.

    PubMed  Google Scholar 

  12. Johansson S, Ytterberg C, Claesson IM, Lindberg J, Hillert J, Andersson M, et al. High concurrent presence of disability in multiple sclerosis: Associations with perceived health. J Neurol. 2007;254(6):767–73.

    PubMed  Google Scholar 

  13. Mayo NE, Wood-Dauphinee S, Ahmed S, Gordon C, Higgins J, Mcewen S, et al. Disablement following stroke. DisabilRehabil. 1999;21(5–6):258–68.

    Google Scholar 

  14. Yozbatiran N, Baskurt F, Baskurt Z, Ozakbas S, Idiman E. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. J Neurol Sci. 2006;246(1–2):117–22.

    PubMed  Google Scholar 

  15. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Libr. 2014.

    Google Scholar 

  16. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    PubMed  Google Scholar 

  17. Freburger JK, Holmes GM, Ku L-JE, Cutchin MP, Heatwole-Shank K, Edwards LJ. Disparities in postacute rehabilitation care for stroke: an analysis of the state inpatient databases. Arch Phys Med Rehabil. 2011;92(8):1220–9.

    Google Scholar 

  18. Chan L, Wang H, Terdiman J, Hoffman J, Ciol MA, Lattimore BF, et al. Disparities in outpatient and home health service utilization following stroke: results of a 9-year cohort study in Northern California. PM&R. 2009;1(11):997–1003.

    Google Scholar 

  19. Miller KK, Porter RE, DeBaun-Sprague E, Van Puymbroeck M, Schmid AA. Exercise after stroke: patient adherence and beliefs after discharge from rehabilitation. Top Stroke Rehabil. 2017;24(2):142–8.

    PubMed  Google Scholar 

  20. Donoso Brown EV, Fichter R. Home programs for upper extremity recovery post-stroke: a survey of occupational therapy practitioners. Top Stroke Rehabil. 2017;24(8):573–8.

    Google Scholar 

  21. Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res. 2017;8(1):33–46.

    CAS  PubMed  Google Scholar 

  22. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224(4):591–605.

    CAS  PubMed  Google Scholar 

  23. Merzenich MM, Jenkins WM. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther. 1993;6(2):89–104.

    CAS  PubMed  Google Scholar 

  24. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.

    CAS  PubMed  Google Scholar 

  25. Curt A, Van Hedel HJA, Klaus D, Dietz V, for the EM-SCI study group. recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85.

    Google Scholar 

  26. Kwakkel G, Kollen BJ, Van der Grond JV, Prevo AJH. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.

    PubMed  Google Scholar 

  27. Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, et al. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011;42(2):421–6.

    Google Scholar 

  28. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–32.

    PubMed  Google Scholar 

  29. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009/01/02 ed. 2009;23(4):313–9.

    Google Scholar 

  30. World Health Organization. Towards a common language for functionary, disability and health: ICF beginner’s guide. Geneva WHO. 2002.

    Google Scholar 

  31. Ada L, Canning CG, Carr JH, Kilbreath SL, Shepherd RB. Task-specific training of reaching and manipulation. Adv Psychol. 1994;105:239–65.

    Google Scholar 

  32. Alaverdashvili M, Foroud A, Lim DH, Whishaw IQ. “Learned baduse” limits recovery of skilled reaching for food after forelimb motor cortex stroke in rats: a new analysis of the effect of gestures on success. Behav Brain Res. 2008;188(2):281–90.

    PubMed  Google Scholar 

  33. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39.

    PubMed  Google Scholar 

  34. Aprile I, Rabuffetti M, Padua L, Di Sipio E, Simbolotti C, Ferrarin M, et al. An evidence-based review of stroke rehabilitation. Stroke. 2014;20(1):289–300.

    Google Scholar 

  35. Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J Neurol Phys Ther. 2014;38(3):190–200.

    PubMed  PubMed Central  Google Scholar 

  36. Lamers I, Maris A, Severijns D, Dielkens W, Geurts S, Van Wijmeersch B, et al. Upper limb rehabilitation in people with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2016;30(8):773–93.

    PubMed  Google Scholar 

  37. Lu X, Battistuzzo CR, Zoghi M, Galea MP. Effects of training on upper limb function after cervical spinal cord injury: a systematic review. Clin Rehabil. 2015;29(1):3–13.

    PubMed  Google Scholar 

  38. Lee TD, Wishart LR. Motor learning conundrums (and possible solutions). Quest. 2005.

    Google Scholar 

  39. Winstein CJ, Kay DB. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage [Internet]. 1st ed. Vol. 218, Progress in Brain Research. Elsevier B.V.; 2015. pp. 331–360. https://doi.org/10.1016/bs.pbr.2015.01.004.

  40. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–5.

    CAS  PubMed  Google Scholar 

  41. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–8.

    PubMed  PubMed Central  Google Scholar 

  42. Winstein C, Kim B, Kim S, Martinez C, Schweighofer N. Dosage matters: a phase IIb randomized controlled trial of motor therapy in the chronic phase after stroke. Stroke. 2019;50(7):1831–7.

    PubMed  Google Scholar 

  43. Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.

    PubMed  PubMed Central  Google Scholar 

  44. Lang CE, MacDonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.

    Google Scholar 

  45. Proffitt R. Home exercise programs for adults with neurological injuries: a survey. Am J Occup Ther. 2016;70(3):7003290020p1–8.

    Google Scholar 

  46. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25(12):1085–99.

    Google Scholar 

  47. Dickstein R, Hocherman S, Pillar T, Shaham R. Stroke rehabilitation: three exercise therapy approaches. Phys Ther. 1986;66(8):1233–8.

    CAS  PubMed  Google Scholar 

  48. Subramanian SK, Fountain MA, Hood AF, Verduzco-Gutierrez M. Upper Limb motor improvement after TBI: systematic review of interventions [Internet]. Rehabil Med Phys Ther. 2020 Nov [cited 2021 Oct 5]. http://medrxiv.org/lookup, https://doi.org/10.1101/2020.11.12.20214478.

  49. Spooren A, Janssen-Potten YJM, Kerckhofs E, Seelen HAM. Outcome of motor training programmes on arm and hand functioning in patients with cervical spinal cord injury according to different levels of the ICF: a systematic review. J Rehabil Med. 41(7):497–505.

    Google Scholar 

  50. Saikaley M, Pauli G, Iruthayarajah J, Mirkowski M, Iliescu A, Caughlin S, et al. Upper extremity motor rehabilitation interventions. 366.

    Google Scholar 

  51. Wolf S, Lecraw D, Barton L, Jann B. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32.

    CAS  PubMed  Google Scholar 

  52. Taub E. Movement in nonhuman primates deprived of somatosensory feedback. Exerc Sport Sci Rev. 1976;4(1):335–74.

    CAS  PubMed  Google Scholar 

  53. Taub E, Crago JE, Burgio LD, Groomes TE, Cook EW, DeLuca SC, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252(5014):1857–60.

    CAS  PubMed  Google Scholar 

  55. Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3–11.

    PubMed  Google Scholar 

  56. Taub E, Uswatte G, Mark VW, Morris DMM. The learned nonuse phenomenon: Implications for rehabilitation. Eur Medicophysica. 2006;42(3):241–55.

    CAS  Google Scholar 

  57. Taub E, Uswatte G, Mark VW, Morris DM, Barman J, Bowman MH, et al. Method for enhancing real-world use of a more affected arm in chronic stroke. Stroke. 2013;44(5):1383–8.

    PubMed  PubMed Central  Google Scholar 

  58. Winstein CJ, Wolf SL. Task-oriented training to promote upper extremity recovery. In: Stein J Macko RF, Winstein CJ, Zorowitz RD HRL, editor. Stroke recovery and rehabilitation. 2nd edition. New York: Demos Medical; 2014. pp. 267–90.

    Google Scholar 

  59. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database of Systematic Reviews. 2015.

    Google Scholar 

  60. Kwakkel G, Veerbeek JM, van Wegen EEH, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224–34.

    PubMed  PubMed Central  Google Scholar 

  61. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE. 2014;9(2): e87987.

    PubMed  PubMed Central  Google Scholar 

  62. Daniel L, Howard W, Braun D, Page SJ. Opinions of constraint-induced movement therapy among therapists in southwestern Ohio. Top Stroke Rehabil. 2012;19(3):268–75.

    PubMed  Google Scholar 

  63. Dobkin BH. Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the excite and scilt multicenter trials. Neurorehabil Neural Repair. 2007;21(1):3–13.

    PubMed  PubMed Central  Google Scholar 

  64. Page SJ, Levine P. Modified constraint-induced therapy in patients with chronic stroke exhibiting minimal movement ability in the affected arm. Phys Ther. 2007;87(7):872–8.

    PubMed  Google Scholar 

  65. L. Wolf S, J. Winstein C, Miller JP, Blanton S, Clark PC, Nichols-Larsen D. Looking in the rear view mirror when conversing with back seat drivers: the EXCITE trial revisited. Neurorehabil Neural Repair. 2007;21(5):379–87.

    Google Scholar 

  66. Yozbatiran N, Francisco G. Robot-assisted therapy for the upper limb after cervical spinal cord injury. Phys Med Rehabil Clin N Am. 2019;1:30.

    Google Scholar 

  67. Reinkensmeyer, David J. Robotic approaches to stroke recovery. In: Brain repair after stroke. Cambridge University Press; 2010. p. 195–205.

    Google Scholar 

  68. Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–9.

    PubMed  Google Scholar 

  69. Holanda LJ, Silva PMM, Amorim TC, Lacerda MO, Simão CR, Morya E. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. J NeuroEngineering Rehabil. 2017;14(1):126.

    Google Scholar 

  70. Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol. 2021;16:1–15.

    Google Scholar 

  71. Veerbeek JM, Langbroek-Amersfoort AC, Van Wegen EEH, Meskers CGM, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabilitation Neural Repair. 2017.

    Google Scholar 

  72. Rowe JB, Chan V, Ingemanson ML, Cramer SC, Wolbrecht ET, Reinkensmeyer DJ. Robotic assistance for training finger movement using a Hebbian model: a randomized controlled trial. Neurorehabil Neural Repair. 2017;31(8):769–80.

    PubMed  PubMed Central  Google Scholar 

  73. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619.

    PubMed  Google Scholar 

  74. Chyatte SB, Long C, Vignos PJ. The balanced forearm orthosis in muscular dystrophy. 1965;46(9):633–6.

    Google Scholar 

  75. Atkins MS, Baumgarten JM, Yasuda YL, Adkins R, Waters RL, Leung P, et al. Mobile arm supports: evidence-based benefits and criteria for use. J Spinal Cord Med. 2008;31(4):388–93.

    PubMed  PubMed Central  Google Scholar 

  76. Haworth R, Dunscombe S, Nichols PJR. Mobile arm supports: an evaluation. Rheumatology. 1978;17(4):240–4.

    CAS  Google Scholar 

  77. Yasuda YL, Bowman K, Hsu JD. Mobile arm supports: Criteria for successful use in muscle disease patients. Arch Phys Med Rehabil. 1986;67(4):253–6.

    CAS  PubMed  Google Scholar 

  78. van Dorsser WD, Barents R, Wisse BM, Herder JL. Gravity-balanced arm support with energy-free adjustment. J Med Devices. 2007;1(2):151–8.

    Google Scholar 

  79. Housman SJ, Le V, Rahman T, Sanchez RJ, Reinkensmeyer DJ. Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: 2007 IEEE 10th international conference on rehabilitation robotics. 2007. pp. 562–8.

    Google Scholar 

  80. Mastenbroek B, de Haan E, van den Berg M, Herder JL. Development of a mobile arm support (armon): design evolution and preliminary user experience. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics. 2007. p. 1114–20.

    Google Scholar 

  81. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    PubMed  Google Scholar 

  82. Iwamuro BT, Cruz EG, Connelly LL, Fischer HC, Kamper DG. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the therapy assistant WREX. Arch Phys Med Rehabil. 2008;89(11):2121–8.

    PubMed  Google Scholar 

  83. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.

    PubMed  Google Scholar 

  84. Prange GB, Stienen AHA, Jannink MJA, van der Kooij H, IJzerman MJ, Hermens HJ. Increased range of motion and decreased muscle activity during maximal reach with gravity compensation in stroke patients. In: 2007 IEEE 10th international conference on rehabilitation robotics. 2007. pp. 467–71.

    Google Scholar 

  85. Reinkensmeyer DJ, Housman SJ. If I can’t do it once, why do it a hundred times? Connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. In: 2007 Virtual Rehabilitation. 2007. pp. 44–8.

    Google Scholar 

  86. Rémy-Néris O, Le Jeannic A, Dion A, Médée B, Nowak E, Poiroux É, et al. Additional, mechanized upper limb self-rehabilitation in patients with subacute stroke: the REM-AVC randomized trial. Stroke. 2021;52(6):1938–47.

    Google Scholar 

  87. Stienen AHA, Hekman EEG, Prange GB, Jannink MJA, van der Helm FCT, van der Kooij H. Freebal: design of a dedicated weight-support system for upper-extremity rehabilitation. J Med Devices. 2009;3(4): 041009.

    Google Scholar 

  88. Stienen AHA, Hekman EEG, Van der Helm FCT, Prange GB, Jannink MJA, Aalsma AMM, et al. Freebal: dedicated gravity compensation for the upper extremities. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics. 2007. p. 804–8.

    Google Scholar 

  89. Prange GB, Jannink MJA, Stienen AHA, van der Kooij H, IJzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009 Jun 1;23(5):478–85.

    Google Scholar 

  90. Krabben T, Prange GB, Molier BI, Stienen AH, Jannink MJ, Buurke JH, et al. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. J NeuroEngineering Rehabil. 2012;9(1):1–12.

    Google Scholar 

  91. Chen J, Lum PS. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2016. p. 4893–6.

    Google Scholar 

  92. Asgari M, Hall PT, Moore BS, Crouch DL. Wearable shoulder exoskeleton with spring-cam mechanism for customizable, nonlinear gravity compensation. In: 2020 42nd annual international conference of the IEEE engineering in medicine biology society (EMBC). 2020. pp. 4926–9.

    Google Scholar 

  93. Hall PT. Effect of continuous, mechanically passive, anti-gravity assistance on kinematics and muscle activity during dynamic shoulder elevation. J Biomech. 2020;8.

    Google Scholar 

  94. Chen J, Lum PS. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear). J NeuroEngineering Rehabil. 2018;15(1):1–11.

    Google Scholar 

  95. Hijmans J, King M, Hale L. Computerised table top exerciser for stroke survivors [Internet]. 2021 [cited 2021 Oct 5]. https://www.researchgate.net/publication/267698027_COMPUTERISED_TABLE_TOP_EXERCISER_FOR_STROKE_SURVIVORS

  96. Park J, Jung H-T, Daneault J-F, Park S, Ryu T, Kim Y, et al. Effectiveness of the RAPAEL smart board for upper limb therapy in stroke survivors: a pilot controlled trial. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2018. pp. 2466–9.

    Google Scholar 

  97. Peattie A, Korevaar A, Wilson J, S B, Chen X, King M. Automated variable resistance system for upper limb rehabilitation. In: Proceedings of the Australian robotics & automation. 2009. p. 2–4.

    Google Scholar 

  98. Burdea GC, Cioi D, Martin J, Fensterheim D, Holenski M. The Rutgers arm II rehabilitation system—a feasibility study. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):505–14.

    PubMed  Google Scholar 

  99. House G, Burdea G, Grampurohit N, Polistico K, Roll D, Damiani F. Integrative upper-limb rehabilitation with BrightArm Duo TM in the early sub-acute phase of recovery post-stroke. J Med Robot Res. 2017;02(02):1740004.

    Google Scholar 

  100. Jordan K, Sampson M, King M. Gravity-supported exercise with computer gaming improves arm function in chronic stroke. Arch Phys Med Rehabil. 2014;95(8):1484–9.

    PubMed  Google Scholar 

  101. Whitall J, Waller SM, Silver KHC, Macko RF. Repetitive Bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–5.

    CAS  PubMed  Google Scholar 

  102. Hesse S, Schmidt H, Werner C, Rybski C, Puzich U, Bardeleben A. A new mechanical arm trainer to intensify the upper limb rehabilitation of severely affected patients after stroke: design, concept and first case series. Eur Medicophysica. 2007;43(4):463–8.

    CAS  Google Scholar 

  103. Hayward KS, Barker RN, Brauer SG, Lloyd D, Horsley SA, Carson RG. SMART arm with outcome-triggered electrical stimulation: a pilot randomized clinical trial. Top Stroke Rehabil. 2013;20(4):289–98.

    PubMed  Google Scholar 

  104. Minge M, Ivanova E, Lorenz K, Joost G, Thüring M, Krüger J. BeMobil: Developing a user-friendly and motivating telerehabilitation system for motor relearning after stroke. In: 2017 international conference on rehabilitation robotics (ICORR). 2017. pp. 870–5.

    Google Scholar 

  105. Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic StrokeA randomized controlled trial. JAMA. 2004;292(15):1853–61.

    Google Scholar 

  106. Richards LG, Senesac CR, Davis SB, Woodbury ML, Nadeau SE. Bilateral arm training with rhythmic auditory cueing in chronic stroke: not always efficacious. Neurorehabil Neural Repair. 2008;22(2):180–4.

    PubMed  Google Scholar 

  107. Whitall J, Waller SM, Sorkin JD, Forrester LW, Macko RF, Hanley DF, et al. Bilateral and Unilateral Arm Training Improve Motor Function Through Differing Neuroplastic Mechanisms: A Single-Blinded Randomized Controlled Trial. Neurorehabil Neural Repair. 2011;25(2):118–29.

    PubMed  Google Scholar 

  108. van Delden A (Lex) EQ, Peper C (Lieke) E, Nienhuys KN, Zijp NI, Beek PJ, Kwakkel G. Unilateral versus bilateral upper limb training after stroke: the upper limb training after stroke clinical trial. Stroke. 2013 Sep;44(9):2613–6.

    Google Scholar 

  109. Hesse S, Werner C, Pohl M, Mehrholz J, Puzich U, Krebs HI. Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. Am J Phys Med Rehabil. 2008;87(10):779–88.

    CAS  PubMed  Google Scholar 

  110. Barker RN, Hayward KS, Carson RG, Lloyd D, Brauer SG. SMART arm training with outcome-triggered electrical stimulation in subacute stroke survivors with severe arm disability: a randomized controlled trial. Neurorehabil Neural Repair. 2017;31(12):1005–16.

    PubMed  Google Scholar 

  111. Brokaw EB, Black I, Holley RJ, Lum PS. Hand spring operated movement enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):391–9.

    PubMed  Google Scholar 

  112. Haarman CJW, Hekman EEG, Prange GB, van der Kooij H. Joint Stiffness Compensation for Application in the EXTEND Hand Orthosis. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). 2018. p. 677–82.

    Google Scholar 

  113. Ates S, Haarman CJW, Stienen AHA. SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton Robots. 2017;41(3):711–23.

    Google Scholar 

  114. S. Nijenhuis. Technology-supported arm and hand training at home after stroke [PhD Thesis]. [Enschede, The Netherlands]: University of Twente; 2018.

    Google Scholar 

  115. Chen J, Nichols D, Brokaw EB, Lum PS. Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME). IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2305–12.

    PubMed  PubMed Central  Google Scholar 

  116. Nijenhuis SM, Prange-Lasonder GB, Stienen AH, Rietman JS, Buurke JH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil. 2017;31(2):207–16.

    PubMed  Google Scholar 

  117. Levin MF, Demers M. Motor learning in neurological rehabilitation. Disabil Rehabil. 2020:1–9.

    Google Scholar 

  118. Levac D, Glegg S, Colquhoun H, Miller P, Noubary F. Virtual reality and active videogame-based practice, learning needs, and preferences: a cross-Canada survey of physical therapists and occupational therapists. Games Health J. 2017;6(4):217–28.

    PubMed  Google Scholar 

  119. Thomson K, Pollock A, Bugge C, Brady MC. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disabil Rehabil Assist Technol. 2016;11(6):454–61.

    PubMed  Google Scholar 

  120. Levin MF, Deutsch JE, Kafri M, Liebermann D. Validity of virtual reality environments for sensorimotor rehabilitation. In: Virtual reality for physical and motor rehabilitation. Springer; 2014. pp. 95–118. (Virtual reality technologies for health and clinical applications).

    Google Scholar 

  121. Demers M, Levin MF. Kinematic validity of reaching in a 2D virtual environment for arm rehabilitation after stroke. IEEE Trans Neural Syst Rehabil Eng. 2020;28(3):679–86.

    PubMed  Google Scholar 

  122. Deutsch JE, Brettler A, Smith C, Welsh J, John R, Guarrera-Bowlby P, et al. Nintendo Wii sports and Wii fit game analysis, validation, and application to stroke rehabilitation. Top Stroke Rehabil. 2011;18(6):701–19.

    Google Scholar 

  123. Givon Schaham N, Zeilig G, Weingarden H, Rand D. Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation. Int J Rehabil Res Int Z Rehabil Rev Int Rech Readaptation. 2018;41(4):323–30.

    Google Scholar 

  124. Cheok G, Tan D, Low A, Hewitt J. Is Nintendo Wii an Effective Intervention for Individuals With Stroke? A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2015;16(11):923–32.

    PubMed  Google Scholar 

  125. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;2017(11).

    Google Scholar 

  126. Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, Casado-Fernández E, Lucena-Antón D. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1–10.

    Google Scholar 

  127. Mekbib DB, Han J, Zhang L, Fang S, Jiang H, Zhu J, et al. Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Inj. 2020;34(4):456–65.

    PubMed  Google Scholar 

  128. Jung H-T, Kim H, Jeong J, Jeon B, Ryu T, Kim Y. Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: a randomized controlled trial. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017. pp. 3856–9.

    Google Scholar 

  129. Jordan K, Sampson M, Hijmans J, King M, Hale L. ImAble system for upper limb stroke rehabilitation. In: 2011 International Conference on Virtual Rehabilitation. 2011. pp. 1–2.

    Google Scholar 

  130. Hartwig M. Fun and evidence - computer-based arm rehabilitation with the Pablo®Plus System [Internet]. Tyromotion. 2011 [cited 2021 Oct 29]. https://tyromotion.com/wp-content/uploads/2020/11/HartwigM-2011-Fun-and-evidence-computer-based-arm-rehabiltation-with-the-PabloPlus-System.pdf.

  131. Friedman N, Chan V, Zondervan D, Bachman M, Reinkensmeyer DJ. MusicGlove: Motivating and quantifying hand movement rehabilitation by using functional grips to play music. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society. 2011. pp. 2359–63.

    Google Scholar 

  132. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J NeuroEngineering Rehabil. 2014;11(1):1–14.

    Google Scholar 

  133. Zondervan DK, Friedman N, Chang E, Zhao X, Augsburger R, Reinkensmeyer DJ, et al. Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J Rehabil Res Dev. 2016;53(4):457–72.

    PubMed  Google Scholar 

  134. Kilbride C, Scott DJM, Butcher T, Norris M, Ryan JM, Anokye N, et al. Rehabilitation via HOMe based gaming exercise for the upper-limb post Stroke (RHOMBUS): protocol of an intervention feasibility trial. BMJ Open. 2018;8(11): e026620.

    PubMed  PubMed Central  Google Scholar 

  135. Prochazka A, Kowalczewski J. A Fully Automated, Quantitative Test of Upper Limb Function. J Mot Behav. 2015;47(1):19–28.

    PubMed  Google Scholar 

  136. Kowalczewski J, Chong SL, Galea M, Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. 2011;25(5):412–22.

    PubMed  Google Scholar 

  137. Kowalczewski J. Upper extremity neurorehabilitation [Internet] [PhD Thesis]. [Edmonton, Canada]: University of Alberta; 2009 [cited 2021 Sep 6]. https://era.library.ualberta.ca/items/a3966268-bf3d-4bd4-9030.

  138. Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96(5):934–43.

    PubMed  Google Scholar 

  139. Hara Y, Obayashi S, Tsujiuchi K, Muraoka Y. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin Neurophysiol. 2013;124(10):2008–15.

    PubMed  Google Scholar 

  140. Chou C-H, Wang T, Sun X, Niu CM, Hao M, Xie Q, et al. Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients. Med Eng Phys. 2020;84:174–83.

    PubMed  Google Scholar 

  141. Razavian RS, Ghannadi B, McPhee J. Feedback control of functional electrical stimulation for arbitrary upper extremity movements. In: 2017 International Conference on Rehabilitation Robotics (ICORR). 2017. p. 1451–6.

    Google Scholar 

  142. Graham GM, Thrasher TA, Popovic MR. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans Neural Syst Rehabil Eng. 2006;14(1):38–45.

    PubMed  Google Scholar 

  143. Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted vagus nerve stimulation for rehabilitation after stroke. Front Neurosci. 2019;13:280.

    PubMed  PubMed Central  Google Scholar 

  144. Dawson J, Pierce D, Dixit A, Kimberley TJ, Robertson M, Tarver B, et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke. 2016;47(1):143–50.

    PubMed  Google Scholar 

  145. Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL, et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke. 2018;49(3):710–7.

    PubMed  PubMed Central  Google Scholar 

  146. Hays SA, Rennaker RL, Kilgard MP. Chapter 11—targeting plasticity with vagus nerve stimulation to treat neurological disease. In: Merzenich MM, Nahum M, Van Vleet TM, editors. Progress in brain research. Elsevier; 2013 [cited 2021 Oct 5]. p. 275–99. (Changing Brains; vol. 207). https://www.sciencedirect.com/science/article/pii/B9780444633279000102.

  147. Andrews K, Stewart J. Stroke recovery: he can but does he? Rheumatology. 1979;18(1):43–8.

    CAS  Google Scholar 

  148. Kowalczewski J, Prochazka A. Technology improves upper extremity rehabilitation. Prog Brain Res. 2011;192:147–59.

    PubMed  Google Scholar 

  149. Gritsenko V, Prochazka A. A functional electric stimulation—assisted exercise therapy system for hemiplegic hand function11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil. 2004;85(6):881–5.

    PubMed  Google Scholar 

  150. Buick AR, Kowalczewski J, Carson RG, Prochazka A. Tele-supervised FES-assisted exercise for hemiplegic upper limb. IEEE Trans Neural Syst Rehabil Eng. 2016;24(1):79–87.

    PubMed  Google Scholar 

  151. Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, et al. The HAAPI (home arm assistance progression initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair. 2015;29(10):958–68.

    PubMed  PubMed Central  Google Scholar 

  152. Brennan DM, Mawson S, Brownsell S. Telerehabilitation: Enabling the remote delivery of healthcare, rehabilitation, and self management. Stud Health Technol Inform. 2009;145:231–48.

    PubMed  Google Scholar 

  153. Soopramanien A, Jamwal S, Thomas PW. Digital health rehabilitation can improve access to care in spinal cord injury in the UK: a proposed solution. Int J Telerehabilitation. 12(1):3–16.

    Google Scholar 

  154. Brennan K, Curran J, Barlow A, Jayaraman A. Telerehabilitation in neurorehabilitation: has it passed the COVID test? Expert Rev Neurother. 2021;21(8):833–6.

    CAS  PubMed  Google Scholar 

  155. Bower KJ, Verdonck M, Hamilton A, Williams G, Tan D, Clark RA. What factors influence clinicians’ use of technology in neurorehabilitation? a multisite qualitative study. Phys Ther. 2021;101(5):pzab031.

    Google Scholar 

  156. Covid-19: guide for rapid implementation of remote physiotherapy delivery [Internet]. Chart Soc Physiother. [cited 2021 Sep 22]. https://www.csp.org.uk/publications/covid-19-guide-rapid-implementation-remote-physiotherapy-delivery

  157. Occupational Therapy Australia. Telehealth guidelines 2020 [Internet]. 2020 [cited 2021 Oct 6]. https://otaus.com.au/publicassets/553c6eae-ad6c-ea11-9404-005056be13b5/OTA%20Telehealth%20Guidelines%202020.pdf.

  158. Langhorne P, Baylan S, Trialists ESD. Early supported discharge services for people with acute stroke. Cochrane Database Syst Rev [Internet]. 2017 [cited 2021 Oct 5];(7). http://www.cochranelibrary.com/cdsr, https://doi.org/10.1002/14651858.CD000443.pub4/full.

  159. Langhorne P, Taylor G, Murray G, Dennis M, Anderson C, Bautz-Holter E, et al. Early supported discharge services for stroke patients: a meta-analysis of individual patients’ data. The Lancet. 2005;365(9458):501–6.

    Google Scholar 

  160. Glegg SMN, Holsti L, Velikonja D, Ansley B, Brum C, Sartor D. Factors influencing therapists’ adoption of virtual reality for brain injury rehabilitation. Cyberpsychology Behav Soc Netw. 2013;16(5):385–401.

    Google Scholar 

  161. Langan J, Subryan H, Nwogu I, Cavuoto L. Reported use of technology in stroke rehabilitation by physical and occupational therapists. Disabil Rehabil Assist Technol. 2018;13(7):641–7.

    PubMed  Google Scholar 

  162. Chen CC, Bode RK. Factors influencing therapists’ decision-making in the acceptance of new technology devices in stroke rehabilitation. Am J Phys Med Rehabil. 2011;90(5):415–25.

    PubMed  Google Scholar 

  163. Hughes AM, Burridge JH, Demain SH, Ellis-Hill C, Meagher C, Tedesco-Triccas L, et al. Translation of evidence-based Assistive Technologies into stroke rehabilitation: Users’ perceptions of the barriers and opportunities. BMC Health Serv Res. 2014.

    Google Scholar 

  164. Elnady A, Mortenson WB, Menon C. Perceptions of existing wearable robotic devices for upper extremity and suggestions for their development: findings from therapists and people with stroke. JMIR Rehabil Assist Technol. 2018;5(1): e12.

    PubMed  PubMed Central  Google Scholar 

  165. Flynn N, Kuys S, Froude E, Cooke D. Introducing robotic upper limb training into routine clinical practice for stroke survivors: Perceptions of occupational therapists and physiotherapists. Aust Occup Ther J. 2019;66(4):530–8.

    PubMed  Google Scholar 

  166. Hochstenbach-Waelen A, Seelen HAM. Embracing change: practical and theoretical considerations for successful implementation of technology assisting upper limb training in stroke. J NeuroEngineering Rehabil. 2012.

    Google Scholar 

  167. van Ommeren AL, Smulders LC, Prange-Lasonder GB, Buurke JH, Veltink PH, Rietman JS. Assistive technology for the upper extremities after stroke: systematic review of users’ needs. JMIR Rehabil Assist Technol. 2018;5(2): e10510.

    PubMed  PubMed Central  Google Scholar 

  168. Chan IHL, Fong KNK, Chan DYL, Wang AQL, Cheng EKN, Chau PHY, et al. Effects of arm weight support training to promote recovery of upper limb function for subacute patients after stroke with different levels of arm impairments. BioMed Res Int. 2016;2016:1–9.

    Google Scholar 

  169. Ates S, Leon B, Basteris A, Nijenhuis S, Nasr N, Sale P, et al. Technical evaluation of and clinical experiences with the SCRIPT passive wrist and hand orthosis. In: 2014 7th international conference on human system interactions (HSI). 2014. pp. 188–93.

    Google Scholar 

  170. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7.

    PubMed  Google Scholar 

  171. Swanson VA, Chan V, Cruz-Coble B, Alcantara CM, Scott D, Jones M, et al. A pilot study of a sensor enhanced activity management system for promoting home rehabilitation exercise performed during the COVID-19 pandemic: therapist experience, reimbursement, and recommendations for implementation. Int J Environ Res Public Health. 2021;18(19):10186.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Jones M, Collier G, Reinkensmeyer DJ, Deruyter F, Dzivak J, Zondervan D, et al. Big data analytics and sensor-enhanced activity management to improve effectiveness and efficiency of outpatient medical rehabilitation. Int J Environ Res Public Health. 2020;17(3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Demers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demers, M., Rowe, J., Prochazka, A. (2022). Passive Devices for Upper Limb Training. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08995-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08994-7

  • Online ISBN: 978-3-031-08995-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics