Skip to main content

Informed Weak Supervision for Battery Deterioration Level Labeling

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

Learning the deterioration of a battery from charge and discharge data is associated with different non-random uncertainties. A specific methodology is developed, capable of integrating expert knowledge about the problem and of handling the epistemic uncertainty associated with conflicts in the available information. It is shown that the simple concatenation of charge and discharge data in a single training set leads to a biased model. Weak supervision techniques are used to assess the relative importance of subsets of the training data in the empirical loss function.

Supported by Ministerio de Economía e Industria de España, grant PID2020-112726RB-I00 and by Principado de Asturias, grant SV-PA-21-AYUD/2021/50994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amel, K.R.: From shallow to deep interactions between knowledge representation, reasoning and machine learning. In: Proceedings 13th International Conference Scala Uncertainity Mgmt (SUM 2019), Compiegne, LNCS, pp. 16–18 (2019)

    Google Scholar 

  2. Anseán, D., Baure, G., González, M., Cameán, I., García, A., Dubarry, M.: Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. J. Power Sour. 459, 227882 (2020)

    Google Scholar 

  3. Bauckhage, C., Ojeda, C., Schücker, J., Sifa, R., Wrobel, S.: Informed machine learning through functional composition. In: LWDA, pp. 33–37 (2018)

    Google Scholar 

  4. Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., Howey, D.A.: Degradation diagnostics for lithium ion cells. J. Power Sour. 341, 373–386 (2017)

    Article  Google Scholar 

  5. Bloom, I., Jansen, A.N., Abraham, D.P., Knuth, J., Jones, S.A., Battaglia, V.S., Henriksen, G.L.: Differential voltage analyses of high-power, lithium-ion cells: 1. technique and application. J. Power Sour. 139(1–2), 295–303 (2005)

    Google Scholar 

  6. Conway, G., Joshi, A., Leach, F., García, A., Senecal, P.K.: A review of current and future powertrain technologies and trends in 2020. Transp. Eng. 5, 100080 (2021)

    Google Scholar 

  7. Dubarry, M., Baure, G., Anseán, D.: Perspective on state-of-health determination in lithium-ion batteries. J. Electrochem. Energy Conv. Storage 17(4), 044701 (2020)

    Google Scholar 

  8. Dubarry, M., Svoboda, V., Hwu, R., Liaw, B.Y.: Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries. Electrochem. Solid State Lett. 9(10), A454 (2006)

    Google Scholar 

  9. Dubarry, M., Truchot, C., Liaw, B.Y.: Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sour. 219, 204–216 (2012)

    Google Scholar 

  10. Guillaume, R., Dubois, D.: A min-max regret approach to maximum likelihood inference under incomplete data. Int. J. Approximate Reasoning 121, 135–149 (2020)

    Google Scholar 

  11. Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., Ouyang, M.: A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 1, 100005 (2019)

    Google Scholar 

  12. Hüllermeier, E., Destercke, S., Couso, I.: Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants. In: Ben Amor, N., Quost, B., Theobald, M. (eds.) SUM 2019. LNCS (LNAI), vol. 11940, pp. 266–279. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35514-2_20

    Chapter  Google Scholar 

  13. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)

    Google Scholar 

  14. Palacín, M.R.: Understanding ageing in li-ion batteries: a chemical issue. Chem. Soc. Rev. 47(13), 4924–4933 (2018)

    Google Scholar 

  15. Rauf, H., Khalid, M., Arshad, N.: Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 156, 111903 (2022)

    Google Scholar 

  16. von Rueden, L., et al.: Informed machine learning - a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Trans. Knowl. Data Eng. (In press)

    Google Scholar 

  17. Severson, K.A., et al.: Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4(5), 383–391 (2019)

    Google Scholar 

  18. Shim, J., Kostecki, R., Richardson, T., Song, X., Striebel, K.A.: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sourc.112(1), 222–230 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez, L., Costa, N., Anseán, D., Couso, I. (2022). Informed Weak Supervision for Battery Deterioration Level Labeling. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08974-9_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08973-2

  • Online ISBN: 978-3-031-08974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics