Skip to main content

Secondary Voltage Control Areas Using Hybrid Methods for Systems with High Wind Penetration

  • Conference paper
  • First Online:
Latest Advances in Electrical Engineering, and Electronics

Abstract

The problem of voltage stability has become a major challenge in current power systems, where there is high penetration of wind energy and ineffective voltage control schemes to adequately take advantage of reactive power reserves. This work presents a novel proposal for secondary voltage control, which considers quasi-optimal control areas determined based on Modal Energy criteria and a MonteCarlo Simulation Approach combined with K-means clustering. The simulations consider the concept of Extended Power Flow, the inclusion of stochastic models for Wind Power and the optimization of reactive power reserves for control. This proposal is intended to optimize reactive power resources when voltage setpoints are defined in pilot area buses for control purposes. The results of the proposed control strategy are validated by Residue Method Evaluation and Quasi-Dynamic Simulation. In the determined control areas, the most critical buses are identified. In this buses, reactive compensation devices are incorporated to contribute to the voltage control of the areas. The proposed methods are applied in the IEEE 39-bus system. The obtained results clearly show the effectiveness of the proposed control strategy. In addition, a statistical comparison with results in which there is no control is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedoya, A.: Metodología para el análisis de estabilidad de tensión mediante la división de redes en áreas de control. Universidad Nacional de Colombia, Medellín (2014)

    Google Scholar 

  2. Morales, C.: Estudio comparativo de metodologías para la detección de áreas de control de tensión. Universidad Tecnológica de Pereira, Pereira (2016)

    Google Scholar 

  3. Pengwei, D., Ross, B., Tuohy, A.: Integration of Large-Scale Renewable Energy into Bulk Power Systems From Planning to Operation. Springer, New York (2017)

    Google Scholar 

  4. Rios, J., Zamora, A.: Secondary Voltage Control Areas through Energy Levels. In: 2016 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T&D-LA) (2016)

    Google Scholar 

  5. Conejo, A., de la Fuente, I.: Goransson, S.: Comparison of alternative algorithms to select pilot buses for secondary voltage control in electric power networks. In: Proceedings of MELECON ‘94. Mediterranean Electrotechnical Conference, Antalya (1994)

    Google Scholar 

  6. Tangarife, C.: Estudio comparativo de metodologías para la detección de áreas de control de tensión. Universidad Tecnologica de Pereira, Pereira (2016)

    Google Scholar 

  7. Kessel, P., Glavitsch, H.: Estimating the voltage stability of a power system. In: IEEE Transactions on Power Delivery, vols. PWRD-1, no. 3 (1986)

    Google Scholar 

  8. Sanz, F., Ramirez, J., Correa, R.: Statistical estimation of power system vulnerability. IEEE (2013)

    Google Scholar 

  9. C.V. Voltage Stability and Controllability indices for Multimachine Power Systems: IEEE Trans. Power Sys. 10(3), 1183–1186 (1995)

    Google Scholar 

  10. Fonseca, A., Pérez-Yauli, F., Salazar, G.: Loadability analysis based on short-circuit power. IET Gener. Transm. Distrib. 11(10), 2540–2548 (2016)

    Article  Google Scholar 

  11. La Gatta, P.O., Pereira, J.L.R.: An affine arithmetic method to identify voltage control areas. In: 2015 IEEE Eindhoven PowerTech. Eindhoven (2015)

    Google Scholar 

  12. González, X., Ramirez, J.: Control Jerárquico de Potencia Reactiva a paratir de una Formulación Multiobjetivo, CINVESTAV – Guadalajara – MEXICO, Guadalajara (2018)

    Google Scholar 

  13. Yidan, L.: A Wide Area Hierarchical Voltage Control for Systems with High Wind Penetration and an HVDC Overlay. University of Tennessee, Knoxville (2017)

    Google Scholar 

  14. Conejo, A., Gómez, T., de la Fuente, I.: Pilot-bus selection for secondary voltage control. ETEP 3(5), 359–365 (1993)

    Article  Google Scholar 

  15. Soroudi, A., Amraee, T.: Probabilistic determination of pilot points for zonal voltage control. IET Gener. Transm. Distrib. 6(1), 1–10 (2011)

    Google Scholar 

  16. Yan, W., Cui, W.: Pilot-bus-centered automatic voltage control with high penetration level of wind. IEEE (2015)

    Google Scholar 

  17. Popovic, D., Levi, V.: Extension of the load flow model with remote voltage control by generator. Electric Power Sys. Res. 25, 207–212 (2012)

    Article  Google Scholar 

  18. Qin, N.: Voltage Control in the Future Power Transmission. Springer, Aalborg (2018)

    Book  Google Scholar 

  19. Kundur, P., Paserba, J., Ajjarapu, V., Canizares, C., Hatziargyriou, N.: Definition and classification of power system stability. IEEE Trans. Power Syst. 19(2), 1388–1396 (2004)

    Google Scholar 

  20. Kundur, P.: Power System Stability and Control. McGraw Hill (1994)

    Google Scholar 

  21. Liu, C., Qin, N., Sun, K.: Remote voltage control using the holomorphic embedding load flow method. IEEE Trans. Smart Grid 10(6), 1–15 (2019)

    Article  Google Scholar 

  22. Amraee, T., Soroudi, A.: Probabilistic determination of pilot points for zonal voltage control. IET Gener. Transm. Distrib. 6, 1–10 (2011)

    Article  Google Scholar 

  23. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Oxford (2005)

    MATH  Google Scholar 

  24. Dragan, S., Levi, V.A.: Extension of the load flow model with remote voltage control by generator. Electric Power Sys. Res. 25, 207–212 (1992)

    Article  Google Scholar 

  25. Zhu, L., Zhou, S., Zhang, Y.: Extended Load-Flow Arithmetic for Voltage Stability Analysis. In: PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409). Perth (2000)

    Google Scholar 

  26. DIgSILENT GmbH: PowerFactory 2020 - Python Function Reference, Gomaringen: DIgSILENT GmbH (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaca, S., Gallardo, C. (2022). Secondary Voltage Control Areas Using Hybrid Methods for Systems with High Wind Penetration. In: Botto-Tobar, M., Zambrano Vizuete, M., Diaz Cadena, A., Vizuete, A.Z. (eds) Latest Advances in Electrical Engineering, and Electronics. Lecture Notes in Electrical Engineering, vol 933. Springer, Cham. https://doi.org/10.1007/978-3-031-08942-8_2

Download citation

Publish with us

Policies and ethics