Skip to main content

Calmodulin Regulation of Voltage-Gated Calcium Channels

  • Chapter
  • First Online:
Voltage-Gated Calcium Channels

Abstract

The ubiquitous Ca2+ sensor calmodulin (CaM) serves as a preeminent modulator of voltage-gated Ca2+ channels, exerting rapid and powerful feedback control of Ca2+ entry into cardiomyocytes and neurons. Over the past three decades, this modulation has emerged as a prototype for ion channel regulation with important physiological and pathophysiological implications. In this chapter, we summarize key findings pertaining to structural and biological mechanisms of CaM regulation, as well as elaborate on how CaV channel misregulation underlies a wide range of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderemane-Ali, F., Findeisen, F., Rossen, N. D., & Minor, D. L., Jr. (2019). A selectivity filter gate controls voltage-gated calcium channel calcium-dependent inactivation. Neuron, 101(1134-1149), e1133.

    Google Scholar 

  • Adams, P. J., Ben-Johny, M., Dick, I. E., Inoue, T., & Yue, D. T. (2014). Apocalmodulin itself promotes ion channel opening and Ca(2+) regulation. Cell, 159, 608–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alseikhan, B. A., DeMaria, C. D., Colecraft, H. M., & Yue, D. T. (2002). Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proceedings of the National Academy of Sciences of the United States of America, 99, 17185–17190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asmara, H., Minobe, E., Saud, Z. A., & Kameyama, M. (2010). Interactions of calmodulin with the multiple binding sites of Cav1.2 Ca2+ channels. Journal of Pharmacological Sciences, 112, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Asmara, H., Micu, I., Rizwan, A. P., Sahu, G., Simms, B. A., Zhang, F. X., Engbers, J. D. T., Stys, P. K., Zamponi, G. W., & Turner, R. W. (2017). A T-type channel-calmodulin complex triggers alphaCaMKII activation. Molecular Brain, 10, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babitch, J. (1990). Channel hands. Nature, 346, 321–322.

    Article  CAS  PubMed  Google Scholar 

  • Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., & Cook, W. J. (1985). Three-dimensional structure of calmodulin. Nature, 315, 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, R., Yoder, J. B., Yue, D. T., Amzel, L. M., Tomaselli, G. F., Gabelli, S. B., & Ben-Johny, M. (2018). Bilobal architecture is a requirement for calmodulin signaling to CaV1.3 channels. Proceedings of the National Academy of Sciences of the United States of America, 115, E3026–E3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, C. F., & Tsien, R. W. (2008). The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 105, 2157–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzazi, H., Ben Johny, M., Adams, P. J., Soong, T. W., & Yue, D. T. (2013). Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. Cell Reports, 5, 367–377.

    Article  CAS  PubMed  Google Scholar 

  • Ben Johny, M., Yang, P. S., Bazzazi, H., & Yue, D. T. (2013). Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nature Communications, 4, 1717.

    Article  PubMed  Google Scholar 

  • Ben-Johny, M., & Yue, D. T. (2014). Calmodulin regulation (calmodulation) of voltage-gated calcium channels. The Journal of General Physiology, 143, 679–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Johny, M., Yang, P. S., Niu, J., Yang, W., Joshi-Mukherjee, R., & Yue, D. T. (2014). Conservation of Ca2+/calmodulin regulation across Na and Ca2+ channels. Cell, 157, 1657–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Johny, M., Dick, I. E., Sang, L., Limpitikul, W. B., Kang, P. W., Niu, J., Banerjee, R., Yang, W., Babich, J. S., Issa, J. B., et al. (2015). Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels. Current Molecular Pharmacology, 8, 188–205.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Johny, M., Yue, D. N., & Yue, D. T. (2016). Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nature Communications, 7, 13709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benmocha Guggenheimer, A., Almagor, L., Tsemakhovich, V., Tripathy, D. R., Hirsch, J. A., & Dascal, N. (2016). Interactions between N and C termini of alpha1C subunit regulate inactivation of CaV1.2 L-type Ca(2+) channel. Channels (Austin, Tex.), 10, 55–68.

    Article  Google Scholar 

  • Benmocha, A., Almagor, L., Oz, S., Hirsch, J. A., & Dascal, N. (2009). Characterization of the calmodulin-binding site in the N terminus of CaV1.2. Channels (Austin, Tex.), 3, 337–342.

    Article  CAS  Google Scholar 

  • Bock, G., Gebhart, M., Scharinger, A., Jangsangthong, W., Busquet, P., Poggiani, C., Sartori, S., Mangoni, M. E., Sinnegger-Brauns, M. J., Herzig, S., et al. (2011). Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels. The Journal of Biological Chemistry, 286, 42736–42748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boczek, N. J., Miller, E. M., Ye, D., Nesterenko, V. V., Tester, D. J., Antzelevitch, C., Czosek, R. J., Ackerman, M. J., & Ware, S. M. (2015). Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm: The Official Journal of the Heart Rhythm Society, 12, 211–219.

    Article  Google Scholar 

  • Boczek, N. J., Gomez-Hurtado, N., Ye, D., Calvert, M. L., Tester, D. J., Kryshtal, D., Hwang, H. S., Johnson, C. N., Chazin, W. J., Loporcaro, C. G., et al. (2016). Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circulation. Cardiovascular Genetics, 9, 136–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm, P., & Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in Paramecium. Science, 202, 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  • Burtscher, V., Schicker, K., Novikova, E., Pohn, B., Stockner, T., Kugler, C., Singh, A., Zeitz, C., Lancelot, M. E., Audo, I., et al. (2014). Spectrum of Cav1.4 dysfunction in congenital stationary night blindness type 2. Biochimica et Biophysica Acta, 1838, 2053–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campiglio, M., Coste de Bagneaux, P., Ortner, N. J., Tuluc, P., Van Petegem, F., & Flucher, B. E. (2018). STAC proteins associate to the IQ domain of CaV1.2 and inhibit calcium-dependent inactivation. Proceedings of the National Academy of Sciences of the United States of America, 115, 1376–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capes, D. L., Goldschen-Ohm, M. P., Arcisio-Miranda, M., Bezanilla, F., & Chanda, B. (2013). Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. The Journal of General Physiology, 142, 101–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakouri, N., Diaz, J., Yang, P. S., & Ben-Johny, M. (2020). CaV channels reject signaling from a second CaM in eliciting Ca(2+)-dependent feedback regulation. The Journal of Biological Chemistry, 295, 14948–14962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, D., Chang, S. Y., DeMaria, C. D., Alvania, R. S., Soong, T. W., & Yue, D. T. (2004). Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. The Journal of Neuroscience, 24, 6334–6342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, D., Alseikhan, B. A., Chang, S. Y., Soong, T. W., & Yue, D. T. (2005). Developmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current. The Journal of Neuroscience, 25, 8282–8294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, D., Issa, J. B., & Yue, D. T. (2007). Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. The Journal of General Physiology, 129, 385–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemin, J., Taiakina, V., Monteil, A., Piazza, M., Guan, W., Stephens, R. F., Kitmitto, A., Pang, Z. P., Dolphin, A. C., Perez-Reyes, E., et al. (2017). Calmodulin regulates Cav3 T-type channels at their gating brake. The Journal of Biological Chemistry, 292, 20010–20031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christel, C., & Lee, A. (2012). Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochimica et Biophysica Acta, 1820, 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  • Crotti, L., Johnson, C. N., Graf, E., De Ferrari, G. M., Cuneo, B. F., Ovadia, M., Papagiannis, J., Feldkamp, M. D., Rathi, S. G., Kunic, J. D., et al. (2013). Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation, 127, 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Crotti, L., Spazzolini, C., Tester, D. J., Ghidoni, A, Baruteau, A. E,, Beckmann, B. M., Behr, E. R., Bennett, J. S., Bezzina, C. R., Bhuiyan, Z. A., Celiker, A., Cerrone, M., Dagradi, F., De Ferrari, G. M., Etheridge, S. P., Fatah, M., Garcia-Pavia, P., Al-Ghamdi, S., Hamilton, R. M., Al-Hassnan, Z. N., Horie, M., Jimenez-Jaimez, J., Kanter, R. J., Kaski, J. P., Kotta, M. C., Lahrouchi, N., Makita, N., Norrish, G., Odland, H. H., Ohno, S., Papagiannis, J., Parati, G., Sekarski, N., Tveten, K., Vatta, M., Webster, G., Wilde, A. A. M., Wojciak, J., George, A. L., Ackerman, M. J., Schwartz, P. J. (2019). Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J, 40, 2964–2975.

    Google Scholar 

  • DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S., & Yue, D. T. (2001a). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature, 411, 484–489.

    Google Scholar 

  • DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S., & Yue, D. T. (2001b). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature, 411, 484–489.

    Google Scholar 

  • Di Guilmi, M. N., Wang, T., Inchauspe, C. G., Forsythe, I. D., Ferrari, M. D., van den Maagdenberg, A. M., Borst, J. G., & Uchitel, O. D. (2014). Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. The Journal of Neuroscience, 34, 7047–7058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., & Yue, D. T. (2008). A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature, 451, 830–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick, I. E., Joshi-Mukherjee, R., Yang, W., & Yue, D. T. (2016). Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca(2+)-dependent inactivation. Nature Communications, 7, 10370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer, P. J., Dell’Acqua, M. L., & Sather, W. A. (2014). Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A. Cell Reports, 7, 1410–1416.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Gao, Y., Xu, S., Wang, Y., Yu, Z., Li, Y., Li, B., Yuan, T., Yang, B., Zhang, X. C., et al. (2021). Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Reports, 37, 109931.

    Article  CAS  PubMed  Google Scholar 

  • Eaholtz, G., Scheuer, T., & Catterall, W. A. (1994). Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron, 12, 1041–1048.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, R., & Chad, J. (1984). Inactivation of Ca channels. Progress in Biophysics and Molecular Biology (London), 44, 215–267.

    Article  CAS  Google Scholar 

  • Erickson, M. G., Alseikhan, B. A., Peterson, B. Z., & Yue, D. T. (2001). Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron, 31, 973–985.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, M. G., Liang, H., Mori, M. X., & Yue, D. T. (2003). FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron, 39, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Evans, T. I., Hell, J. W., & Shea, M. A. (2011). Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of Ca(V)1.2. Biophysical Chemistry, 159, 172–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faas, G. C., Raghavachari, S., Lisman, J. E., & Mody, I. (2011). Calmodulin as a direct detector of Ca2+ signals. Nature Neuroscience, 14, 301–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber, G. M., Silva, J., Livshitz, L., & Rudy, Y. (2007). Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: A theoretical investigation. Biophysical Journal, 92, 1522–1543.

    Article  CAS  PubMed  Google Scholar 

  • Fallon, J. L., Baker, M. R., Xiong, L., Loy, R. E., Yang, G., Dirksen, R. T., Hamilton, S. L., & Quiocho, F. A. (2009). Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proceedings of the National Academy of Sciences of the United States of America, 106, 5135–5140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeisen, F., & Minor, D. L., Jr. (2010). Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation. Structure, 18, 1617–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeisen, F., Rumpf, C. H., & Minor, D. L., Jr. (2013). Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain. Journal of Molecular Biology, 425, 3217–3234.

    Article  CAS  PubMed  Google Scholar 

  • Flucher, B. E., & Campiglio, M. (2019). STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochimica et Biophysica Acta-Molecular Cell Research, 1866, 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama, M., Wang, Q., Kato, K., Ohno, S., Ding, W. G., Toyoda, F., Itoh, H., Kimura, H., Makiyama, T., Ito, M., et al. (2014). Long QT syndrome type 8: Novel CACNA1C mutations causing QT prolongation and variant phenotypes. Europace, 16, 1828–1837.

    Article  PubMed  Google Scholar 

  • Gao, S., Yao, X., & Yan, N. (2021). Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature, 596, 143–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves, T. D., Imbrici, P., Kors, E. E., Terwindt, G. M., Eunson, L. H., Frants, R. R., Haan, J., Ferrari, M. D., Goadsby, P. J., Hanna, M. G., et al. (2008). Premature stop codons in a facilitating EF-hand splice variant of CaV2.1 cause episodic ataxia type 2. Neurobiology of Disease, 32, 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Haeseleer, F., Imanishi, Y., Sokal, I., Filipek, S., & Palczewski, K. (2002). Calcium-binding proteins: Intracellular sensors from the calmodulin superfamily. Biochemical and Biophysical Research Communications, 290, 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Halling, D. B., Georgiou, D. K., Black, D. J., Yang, G., Fallon, J. L., Quiocho, F. A., Pedersen, S. E., & Hamilton, S. L. (2009). Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. The Journal of Biological Chemistry, 284, 20041–20051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie, J., & Lee, A. (2016). Decalmodulation of Cav1 channels by CaBPs. Channels (Austin, Tex.), 10, 33–37.

    Article  Google Scholar 

  • Hess, P., Lansman, J. B., & Tsien, R. W. (1984). Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature, 311, 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. The Journal of Physiology, 116, 497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstick, E. J., Linsley, J. W., Dowling, J. J., Hauser, M. A., McDonald, K. K., Ashley-Koch, A., Saint-Amant, L., Satish, A., Cui, W. W., Zhou, W., et al. (2013). Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nature Communications, 4, 1952.

    Article  PubMed  Google Scholar 

  • Hsu, I. U., Linsley, J. W., Varineau, J. E., Shafer, O. T., & Kuwada, J. Y. (2018). Dstac is required for normal circadian activity rhythms in Drosophila. Chronobiology International, 35, 1016–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Tan, B. Z., Shen, Y., Tao, J., Jiang, F., Sung, Y. Y., Ng, C. K., Raida, M., Kohr, G., Higuchi, M., et al. (2012). RNA editing of the IQ domain in Ca(v)1.3 channels modulates their Ca(2)(+)-dependent inactivation. Neuron, 73, 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Kapeli, K., Jin, W., Wong, Y. P., Arumugam, T. V., Koh, J. H., Srimasorn, S., Mallilankaraman, K., Chua, J. J. E., Yeo, G. W., et al. (2018). Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9. Nucleic Acids Research, 46, 7323–7338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme, J. T., Yarov-Yarovoy, V., Lin, T. W., Scheuer, T., & Catterall, W. A. (2006). Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. The Journal of Physiology, 576, 87–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imredy, J. P., & Yue, D. T. (1994). Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron, 12, 1301–1318.

    Article  CAS  PubMed  Google Scholar 

  • Ivanina, T., Blumenstein, Y., Shistik, E., Barzilai, R., & Dascal, N. (2000). Modulation of L-type Ca2+ channels by gbeta gamma and calmodulin via interactions with N and C termini of alpha 1C. The Journal of Biological Chemistry, 275, 39846–39854.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, H. H., Brohus, M., Nyegaard, M., & Overgaard, M. T. (2018). Human calmodulin mutations. Frontiers in Molecular Neuroscience, 11, 396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurado, L. A., Chockalingam, P. S., & Jarrett, H. W. (1999). Apocalmodulin. Physiological Reviews, 79, 661–682.

    Article  CAS  PubMed  Google Scholar 

  • Kass, R. S., & Sanguinetti, M. C. (1984). Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. The Journal of General Physiology, 84, 705–726.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Ghosh, S., Nunziato, D. A., & Pitt, G. S. (2004). Identification of the components controlling inactivation of voltage-gated Ca2+ channels. Neuron, 41, 745–754.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F., & Minor, D. L., Jr. (2008). Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure, 16, 1455–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, E. Y., Rumpf, C. H., Van Petegem, F., Arant, R. J., Findeisen, F., Cooley, E. S., Isacoff, E. Y., & Minor, D. L., Jr. (2010). Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization. The EMBO Journal, 29, 3924–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kink, J. A., Maley, M. E., Preston, R. R., Ling, K. Y., Wallen-Friedman, M. A., Saimi, Y., & Kung, C. (1990). Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell, 62, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Kschonsak, M., Chua, H. C., Weidling, C., Chakouri, N., Noland, C. L., Schott, K., Chang, T., Tam, C., Patel, N., Arthur, C. P., et al. (2021). Structural architecture of the human NALCN channelosome. Nature, 603, 180–186.

    Google Scholar 

  • Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B., & Bax, A. (1995). Solution structure of calcium-free calmodulin. Nature Structural Biology, 2, 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmenkina, E., Novikova, E., Jangsangthong, W., Matthes, J., & Herzig, S. (2019). Single-channel resolution of the interaction between C-terminal CaV1.3 isoforms and calmodulin. Biophysical Journal, 116, 836–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landstrom, A. P., Boczek, N. J., Ye, D., Miyake, C. Y., De la Uz, C. M., Allen, H. D., Ackerman, M. J., & Kim, J. J. (2016). Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. International Journal of Cardiology, 220, 290–298.

    Article  PubMed  Google Scholar 

  • Lee, K. S., Marban, E., & Tsien, R. W. (1985). Inactivation of calcium channels in mammalian heart cells: Joint dependence on membrane potential and intracellular calcium. The Journal of Physiology, 364, 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., & Catterall, W. A. (1999). Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature, 399, 155–159.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A., Zhou, H., Scheuer, T., & Catterall, W. A. (2003). Molecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels. Proceedings of the National Academy of Sciences of the United States of America, 100, 16059–16064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. R., Adams, P. J., & Yue, D. T. (2015). Large Ca(2)(+)-dependent facilitation of Ca(V)2.1 channels revealed by Ca(2)(+) photo-uncaging. The Journal of Physiology, 593, 2753–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, M., Xu, J., Gao, Q., Minobe, E., Kameyama, M., & Hao, L. (2018). PKA phosphorylation of Cav1.2 channel modulates the interaction of calmodulin with the C terminal tail of the channel. Journal of Pharmacological Sciences, 137, 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., & Yue, D. T. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron, 39, 951–960.

    Article  CAS  PubMed  Google Scholar 

  • Limpitikul, W. B., Dick, I. E., Joshi-Mukherjee, R., Overgaard, M. T., George, A. L., Jr., & Yue, D. T. (2014). Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 74, 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limpitikul, W. B., Dick, I. E., Ben-Johny, M., & Yue, D. T. (2016). An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Scientific Reports, 6, 27235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limpitikul, W. B., Dick, I. E., Tester, D. J., Boczek, N. J., Limphong, P., Yang, W., Choi, M. H., Babich, J., DiSilvestre, D., Kanter, R. J., et al. (2017). A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circulation Research, 120, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Linse, S., Helmersson, A., & Forsen, S. (1991). Calcium binding to calmodulin and its globular domains. The Journal of Biological Chemistry, 266, 8050–8054.

    Article  CAS  PubMed  Google Scholar 

  • Linsley, J. W., Hsu, I. U., Groom, L., Yarotskyy, V., Lavorato, M., Horstick, E. J., Linsley, D., Wang, W., Franzini-Armstrong, C., Dirksen, R. T., et al. (2017). Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proceedings of the National Academy of Sciences of the United States of America, 114, E228–E236.

    CAS  PubMed  Google Scholar 

  • Liu, X., Yang, P. S., Yang, W., & Yue, D. T. (2010). Enzyme-inhibitor-like tuning of Ca(2+) channel connectivity with calmodulin. Nature, 463, 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Papa, A., Katchman, A. N., Zakharov, S. I., Roybal, D., Hennessey, J. A., Kushner, J., Yang, L., Chen, B. X., Kushnir, A., et al. (2020). Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 577, 695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livshitz, L., & Rudy, Y. (2009). Uniqueness and stability of action potential models during rest, pacing, and conduction using problem-solving environment. Biophysical Journal, 97, 1265–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan, A., Sato, D., Shiferaw, Y., Baher, A., Xie, L. H., Peralta, R., Olcese, R., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). Modifying L-type calcium current kinetics: Consequences for cardiac excitation and arrhythmia dynamics. Biophysical Journal, 94, 411–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentrard, D., Vassort, G., & Fischmeister, R. (1984). Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. The Journal of General Physiology, 83, 105–131.

    Article  CAS  PubMed  Google Scholar 

  • Mori, M. X., Erickson, M. G., & Yue, D. T. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science, 304, 432–435.

    Article  CAS  PubMed  Google Scholar 

  • Mori, M. X., Vander Kooi, C. W., Leahy, D. J., & Yue, D. T. (2008). Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: High-resolution mechanistic implications for channel regulation by Ca2+. Structure, 16, 607–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morotti, S., Grandi, E., Summa, A., Ginsburg, K. S., & Bers, D. M. (2012). Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations. The Journal of Physiology, 590, 4465–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher, E. (1998). Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release. Neuron, 20, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Niu, J., Dick, I. E., Yang, W., Bamgboye, M. A., Yue, D. T., Tomaselli, G., Inoue, T., & Ben-Johny, M. (2018a). Allosteric regulators selectively prevent Ca(2+)-feedback of CaV and NaV channels. eLife, 7, e35222.

    Google Scholar 

  • Niu, J., Yang, W., Yue, D. T., Inoue, T., & Ben-Johny, M. (2018b). Duplex signaling by CaM and Stac3 enhances CaV1.1 function and provides insights into congenital myopathy. The Journal of General Physiology, 150, 1145–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyegaard, M., & Overgaard, M. T. (2019). The International Calmodulinopathy Registry: Recording the diverse phenotypic spectrum of un-CALM hearts. European Heart Journal, 40, 2976–2978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyegaard, M., Overgaard, M. T., Sondergaard, M. T., Vranas, M., Behr, E. R., Hildebrandt, L. L., Lund, J., Hedley, P. L., Camm, A. J., Wettrell, G., et al. (2012). Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. American Journal of Human Genetics, 91, 703–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveria, S. F., Dittmer, P. J., Youn, D. H., Dell’Acqua, M. L., & Sather, W. A. (2012). Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels. The Journal of Neuroscience, 32, 15328–15337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oz, S., Benmocha, A., Sasson, Y., Sachyani, D., Almagor, L., Lee, A., Hirsch, J. A., & Dascal, N. (2013). Competitive and non-competitive regulation of calcium-dependent inactivation in CaV1.2 L-type Ca2+ channels by calmodulin and Ca2+-binding protein 1. The Journal of Biological Chemistry, 288, 12680–12691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa, J., Ohno, S., Saito, H., Saitoh, A., Matsuura, H., & Horie, M. (2018). A novel CACNA1C mutation identified in a patient with Timothy syndrome without syndactyly exerts both marked loss- and gain-of-function effects. HeartRhythm Case Rep, 4, 273–277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, B. Z., DeMaria, C. D., Adelman, J. P., & Yue, D. T. (1999a). Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L- type calcium channels. Neuron, 22, 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, B. Z., DeMaria, C. D., Adelman, J. P., & Yue, D. T. (1999b). Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron, 22, 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, B. Z., Lee, J. S., Mulle, J. G., Wang, Y., DeLeon, M., & Yue, D. T. (2000). Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophysical Journal, 78, 1906–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinggera, A., & Striessnig, J. (2016). Cav 1.3 (CACNA1D) L-type Ca2+ channel dysfunction in CNS disorders. The Journal of Physiology, 594, 5839–5849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinggera, A., Lieb, A., Benedetti, B., Lampert, M., Monteleone, S., Liedl, K. R., Tuluc, P., & Striessnig, J. (2015). CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biological Psychiatry, 77, 816–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinggera, A., Mackenroth, L., Rump, A., Schallner, J., Beleggia, F., Wollnik, B., & Striessnig, J. (2017). New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Human Molecular Genetics, 26, 2923–2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipilas, D. C., Johnson, C. N., Webster, G., Schlaepfer, J., Fellmann, F., Sekarski, N., Wren, L. M., Ogorodnik, K. V., Chazin, D. M., Chazin, W. J., et al. (2016). Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm: The Official Journal of the Heart Rhythm Society, 13, 2012–2019.

    Article  Google Scholar 

  • Pitt, G. S., Zuhlke, R. D., Hudmon, A., Schulman, H., Reuter, H., & Tsien, R. W. (2001). Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. The Journal of Biological Chemistry, 276, 30794–30802.

    Article  CAS  PubMed  Google Scholar 

  • Plant, T., Standen, N., & Ward, T. (1983). The effects of injection of calcium ions and calcium chelators on calcium channel cnactivation in helix neurones. Journal of Physiology, 334, 189–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polster, A., Perni, S., Bichraoui, H., & Beam, K. G. (2015). Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 112, 602–606.

    Article  CAS  PubMed  Google Scholar 

  • Polster, A., Nelson, B. R., Olson, E. N., & Beam, K. G. (2016). Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation. Proceedings of the National Academy of Sciences of the United States of America, 113, 10986–10991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polster, A., Dittmer, P. J., Perni, S., Bichraoui, H., Sather, W. A., & Beam, K. G. (2018a). Stac proteins suppress Ca(2+)-dependent inactivation of neuronal l-type Ca(2+) channels. The Journal of Neuroscience, 38, 9215–9227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polster, A., Nelson, B. R., Papadopoulos, S., Olson, E. N., & Beam, K. G. (2018b). Stac proteins associate with the critical domain for excitation-contraction coupling in the II-III loop of CaV1.1. The Journal of General Physiology, 150, 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, N., Olcese, R., Bransby, M., Lin, T., & Birnbaumer, L. (1999). Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 96, 2435–2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufenach, B., & Van Petegem, F. (2021). Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. The Journal of Biological Chemistry, 297, 100874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saimi, Y., & Kung, C. (2002). Calmodulin as an ion channel subunit. Annual Review of Physiology, 64, 289–311.

    Article  CAS  PubMed  Google Scholar 

  • Sang, L., Dick, I. E., & Yue, D. T. (2016). Protein kinase A modulation of CaV1.4 calcium channels. Nature Communications, 7, 12239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang, L., Vieira, D. C. O., Yue, D. T., Ben-Johny, M., & Dick, I. E. (2021). The molecular basis of the inhibition of CaV1 calcium-dependent inactivation by the distal carboxy tail. The Journal of Biological Chemistry, 296, 100502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharinger, A., Eckrich, S., Vandael, D. H., Schonig, K., Koschak, A., Hecker, D., Kaur, G., Lee, A., Sah, A., Bartsch, D., et al. (2015). Cell-type-specific tuning of Cav1.3 Ca(2+)-channels by a C-terminal automodulatory domain. Frontiers in Cellular Neuroscience, 9, 309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholl, U. I., Goh, G., Stolting, G., de Oliveira, R. C., Choi, M., Overton, J. D., Fonseca, A. L., Korah, R., Starker, L. F., Kunstman, J. W., et al. (2013). Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nature Genetics, 45, 1050–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaltiel, L., Paparizos, C., Fenske, S., Hassan, S., Gruner, C., Rotzer, K., Biel, M., & Wahl-Schott, C. A. (2012). Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4). The Journal of Biological Chemistry, 287, 36312–36321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, A., Keizer, J., & Rinzel, J. (1990). Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density. Biophysical Journal, 58, 985–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simms, B. A., Souza, I. A., & Zamponi, G. W. (2014). A novel calmodulin site in the Cav1.2 N-terminus regulates calcium-dependent inactivation. Pflügers Archiv, 466, 1793–1803.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Hamedinger, D., Hoda, J. C., Gebhart, M., Koschak, A., Romanin, C., & Striessnig, J. (2006). C-terminal modulator controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nature Neuroscience, 9, 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., Napolitano, C., Schwartz, P. J., Joseph, R. M., Condouris, K., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Timothy, K. W., Decher, N., Kumar, P., Sachse, F. B., Beggs, A. H., Sanguinetti, M. C., & Keating, M. T. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 8089–8096; discussion 8086-8088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standen, N., & Stanfield, P. (1982). A binding-site model for calcium channel inactivation that depends on calcium entry. Proceedings of the Royal Society of London. Series B, Biological Sciences, 217, 101–110.

    CAS  PubMed  Google Scholar 

  • Stern, M. D. (1992). Buffering of calcium in the vicinity of a channel pore. Cell Calcium, 13, 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Tadross, M. R., Dick, I. E., & Yue, D. T. (2008). Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell, 133, 1228–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadross, M. R., Ben Johny, M., & Yue, D. T. (2010). Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. The Journal of General Physiology, 135, 197–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, B. Z., Jiang, F., Tan, M. Y., Yu, D., Huang, H., Shen, Y., & Soong, T. W. (2011). Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. The Journal of Biological Chemistry, 286, 42725–42735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, G. M., Yu, D., Wang, J., & Soong, T. W. (2012). Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. The Journal of Biological Chemistry, 287, 832–847.

    Article  CAS  PubMed  Google Scholar 

  • Tan, G. C., Negro, G., Pinggera, A., Tizen Laim, N. M. S., Mohamed Rose, I., Ceral, J., Ryska, A., Chin, L. K., Kamaruddin, N. A., Mohd Mokhtar, N., et al. (2017). Aldosterone-producing adenomas: Histopathology-genotype correlation and identification of a novel CACNA1D mutation. Hypertension, 70, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Halling, D. B., Black, D. J., Pate, P., Zhang, J. Z., Pedersen, S., Altschuld, R. A., & Hamilton, S. L. (2003). Apocalmodulin and Ca2+ calmodulin-binding sites on the CaV1.2 channel. Biophysical Journal, 85, 1538–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, X., & MacKinnon, R. (2019). Molecular structures of the human Slo1 K(+) channel in complex with beta4. eLife, 8, e51409.

    Google Scholar 

  • Thomas, J. R., & Lee, A. (2016). Measuring Ca2+-dependent modulation of voltage-gated Ca2+ channels in HEK-293T cells. Cold Spring Harbor Protocols, 2016, 762–767.

    Article  Google Scholar 

  • Thomas, J. R., Hagen, J., Soh, D., & Lee, A. (2018). Molecular moieties masking Ca(2+)-dependent facilitation of voltage-gated Cav2.2 Ca(2+) channels. The Journal of General Physiology, 150, 83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidow, H., & Nissen, P. (2013). Structural diversity of calmodulin binding to its target sites. The FEBS Journal, 280, 5551–5565.

    Article  CAS  PubMed  Google Scholar 

  • Tillotson, D. (1979). Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proceedings of the National Academy of Sciences of the United States of America, 76, 1497–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, M., Anderson, D. E., Bartels, P., Nieves-Cintron, M., Coleman, A. M., Henderson, P. B., Man, K. N. M., Tseng, P. Y., Yarov-Yarovoy, V., Bers, D. M., et al. (2020). alpha-Actinin-1 promotes activity of the L-type Ca(2+) channel Cav 1.2. The EMBO Journal, 39, e102622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchitel, O. D., Gonzalez Inchauspe, C., & Di Guilmi, M. N. (2014). Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models. Biophysical Reviews, 6, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Van Petegem, F., Chatelain, F. C., & Minor, D. L., Jr. (2005). Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nature Structural & Molecular Biology, 12, 1108–1115.

    Article  Google Scholar 

  • Wahl-Schott, C., Baumann, L., Cuny, H., Eckert, C., Griessmeier, K., & Biel, M. (2006). Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain. Proceedings of the National Academy of Sciences of the United States of America, 103, 15657–15662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wemhoner, K., Friedrich, C., Stallmeyer, B., Coffey, A. J., Grace, A., Zumhagen, S., Seebohm, G., Ortiz-Bonnin, B., Rinne, S., Sachse, F. B., et al. (2015). Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. Journal of Molecular and Cellular Cardiology, 80, 186–195.

    Article  PubMed  Google Scholar 

  • Weyrer, C., Turecek, J., Niday, Z., Liu, P. W., Nanou, E., Catterall, W. A., Bean, B. P., & Regehr, W. G. (2019). The role of CaV2.1 channel facilitation in synaptic facilitation. Cell Reports, 26, 2289–2297 e2283.

    Article  CAS  PubMed  Google Scholar 

  • Williams, B., Haeseleer, F., & Lee, A. (2018). Splicing of an automodulatory domain in Cav1.4 Ca(2+) channels confers distinct regulation by calmodulin. The Journal of General Physiology, 150, 1676–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingo, T. L., Shah, V. N., Anderson, M. E., Lybrand, T. P., Chazin, W. J., & Balser, J. R. (2004). An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability. Nature Structural & Molecular Biology, 11, 219–225.

    Article  CAS  Google Scholar 

  • Wu, J., Yan, Z., Li, Z., Yan, C., Lu, S., Dong, M., & Yan, N. (2015). Structure of the voltage-gated calcium channel Cav1.1 complex. Science, 350, aad2395.

    Article  PubMed  Google Scholar 

  • Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., et al. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395, 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., & Lipscombe, D. (2001). Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. The Journal of Neuroscience, 21, 5944–5951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., & Wu, L. G. (2005). The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron, 46, 633–645.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Yu, L., Minobe, E., Lu, L., Lei, M., & Kameyama, M. (2016). PKA and phosphatases attached to the Ca(V)1.2 channel regulate channel activity in cell-free patches. American Journal of Physiology-Cell Physiology, 310, C136–C141.

    Article  PubMed  Google Scholar 

  • Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F., & Tsien, R. W. (1993). Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature, 366, 158–161.

    Article  CAS  PubMed  Google Scholar 

  • Yang, P. S., Alseikhan, B. A., Hiel, H., Grant, L., Mori, M. X., Yang, W., Fuchs, P. A., & Yue, D. T. (2006). Switching of Ca2+-dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells. The Journal of Neuroscience, 26, 10677–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, P. S., Johny, M. B., & Yue, D. T. (2014). Allostery in Ca(2)(+) channel modulation by calcium-binding proteins. Nature Chemical Biology, 10, 231–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarotskyy, V., Gao, G., Peterson, B. Z., & Elmslie, K. S. (2009). The Timothy syndrome mutation of cardiac CaV1.2 (L-type) channels: Multiple altered gating mechanisms and pharmacological restoration of inactivation. The Journal of Physiology, 587, 551–565.

    Article  CAS  PubMed  Google Scholar 

  • Yoder, J. B., Ben-Johny, M., Farinelli, F., Srinivasan, L., Shoemaker, S. R., Tomaselli, G. F., Gabelli, S. B., & Amzel, L. M. (2019). Ca(2+)-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif. Nature Communications, 10, 1514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, D. T., Herzig, S., & Marban, E. (1990). Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proceedings of the National Academy of Sciences of the United States of America, 87, 753–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagotta, W. N., Hoshi, T., & Aldrich, R. W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250, 568–571.

    Article  CAS  PubMed  Google Scholar 

  • Zalk, R., Clarke, O. B., des Georges, A., Grassucci, R. A., Reiken, S., Mancia, F., Hendrickson, W. A., Frank, J., & Marks, A. R. (2015). Structure of a mammalian ryanodine receptor. Nature, 517, 44–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Olcese, R., Qin, N., Noceti, F., Birnbaumer, L., & Stefani, E. (1997). Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ – Binding function of a motif with similarity to Ca2+ -binding domains. Proceedings of the National Academy of Sciences of the United States of America, 94, 2301–2305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Yu, K., McCoy, K. L., & Lee, A. (2005). Molecular mechanism for divergent regulation of Cav1.2 Ca2+ channels by calmodulin and Ca2+-binding protein-1. The Journal of Biological Chemistry, 280, 29612–29619.

    Article  CAS  PubMed  Google Scholar 

  • Zuhlke, R. D., & Reuter, H. (1998). Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1c subunit. Proceedings of the National Academy of Sciences of the United States of America, 95, 3287–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., & Reuter, H. (1999). Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature, 399, 159–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manu Ben-Johny or Ivy E. Dick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben-Johny, M., Dick, I.E. (2022). Calmodulin Regulation of Voltage-Gated Calcium Channels. In: Zamponi, G.W., Weiss, N. (eds) Voltage-Gated Calcium Channels . Springer, Cham. https://doi.org/10.1007/978-3-031-08881-0_9

Download citation

Publish with us

Policies and ethics