Abstract
Voltage-gated calcium channels (VGCCs) are essential for transforming electrical signals such as action potentials into biochemical and eventually physiological responses through the control of intracellular calcium. They mediate the depolarization of cells and increase the intracellular Ca2+ levels to regulate a variety of physiological events including neurotransmission, secretion, enzyme activity, cellular differentiation, gene expression, smooth muscle contraction, and pacemaker activity. Deficits in VGCCs function can lead to epilepsy, migraine, ataxia, autism, cardiac arrythmias, and pain. Therefore, careful modulation of VGCCs is vital. In this chapter, we will discuss the modulation of VGCCs by different G protein-coupled receptors and their downstream effectors such as G proteins, lipids, kinases, and synaptic associated proteins focusing primarily on the central nervous system and heart. Moreover, we will describe the underlying mechanisms that G proteins and their downstream second messengers use to control VGCCs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 5-HT:
-
Serotonin
- AA:
-
Arachidonic acid
- AC:
-
Adenylyl cyclase
- AGS:
-
Activator of G protein signaling
- AID:
-
α interaction domain
- AKAP:
-
A-kinase anchoring protein
- AMPA:
-
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AR:
-
adrenoceptor
- BDNF:
-
Brain-derived neurotrophic factor
- Ca2+:
-
Calcium
- CaBP:
-
Ca2+ binding protein
- CaM:
-
Calmodulin
- CaMKII:
-
Ca2+/calmodulin-dependent protein kinase II
- cAMP:
-
Cyclic adenosine monophosphate
- CaS:
-
Ca2+ sensor
- CB:
-
Cannabinoid receptor
- cGMP:
-
Cyclic guanosine monophosphate
- CNS:
-
Central nervous system
- CRF:
-
Corticotropin-releasing factor
- CTX:
-
Cholera toxin
- D1R:
-
Dopamine D1 receptor 2
- D2R:
-
Dopamine D2 receptor
- DAG:
-
Diacylglycerol
- DRG:
-
Dorsal root ganglion
- ER:
-
Endoplasmatic reticulum
- FGF:
-
Fibroblast growth factor
- FGFR1:
-
Fibroblast growth factor type 1 receptor
- FRET:
-
Fluorescence resonance energy transfer
- GABA:
-
Gamma-aminobutyric acid
- GDP:
-
Guanosine diphosphate
- Ghrelin:
-
Growth hormone release inducing
- GHS-R1a:
-
Growth hormone secretagogue receptor 1a
- GID:
-
G protein interaction domain
- GPCRs:
-
G protein-coupled receptors
- GRK:
-
G protein coupled receptor kinase
- GTP:
-
Guanosine triphosphate
- HEK:
-
Human embryonic kidney
- ICa:
-
Ca2+ current
- IGF-1:
-
Insulin-like growth factor 1
- IP3:
-
Inositol triphosphate
- Kir:
-
Inward rectifying potassium channel
- LPA:
-
Lysophosphatidic acid
- LTD:
-
Long term depression
- LTP:
-
Long-term potentiation
- M1R:
-
Muscarinic receptor 1
- MAPK:
-
Mitogen-activated protein kinase
- mGluR:
-
Metabotropic glutamate receptor
- NA:
-
noradrenaline
- Na:
-
sodium
- NCS-1:
-
Neural Ca2+ sensor-1
- NO:
-
Nitric oxide
- OAG:
-
1,2-Oleoylacetyl-glycerol
- PDE:
-
Phosphodiesterase
- PI3K:
-
Phosphatidylinositol 3-kinase
- PIP2:
-
Phosphatidylinositol 4,5-bisphosphate
- PKA:
-
Protein kinase A
- PKC:
-
Protein kinase C
- PKG:
-
Protein kinase G
- PKI:
-
Protein kinase A inhibitor
- PLC:
-
Phospholipase C
- PMA:
-
Phorbol-myristate 13-acetate
- PP:
-
protein phosphatase
- PSD-95:
-
Postsynaptic density protein-95
- PTK:
-
Protein tyrosine kinase
- PTX:
-
Pertussis toxin
- RGS:
-
Regulators of G protein signaling
- ROCK:
-
Rho-associated protein kinase
- SNAP-25:
-
Synaptosomal-associated protein
- SNAREs:
-
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors
- SST:
-
Somatostatin receptor
- Thr:
-
Threonine
- VGCCs:
-
Voltage-gated calcium channels
- VILIP-2:
-
Visinin-like protein-2
References
Agler, H. L., Evans, J., Colecraft, H. M., & Yue, D. T. (2003). Custom distinctions in the interaction of G-protein beta subunits with N-type (CaV2.2) versus P/Q-type (CaV2.1) calcium channels. The Journal of General Physiology, 121, 495–510.
Agler, H., Evans, J., Tay, L., Anderson, M., Colecraft, H., & Yue, D. (2005). G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Neuron, 46(6), 891–904.
Altier, C., Khosravani, H., Evans, R. M., Hameed, S., Peloquin, J. B., Vartian, B. A., et al. (2006). ORL1 receptor-mediated internalization of N-type calcium channels. Nature Neuroscience, 9(1), 31–40.
Alvarez, J. L., Rubio, L. S., & Vassort, G. (1996). Facilitation of T-type calcium current in bullfrog atrial cells: Voltage-dependent relief of a G protein inhibitory tone. The Journal of Physiology, 491(2), 321–334.
Andrade, A., Denome, S., Jiang, Y., Marangoudakis, S., & Lipscombe, D. (2010). Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing. Nature Neuroscience, 13(10), 1249–1256.
Anliker, B., & Chun, J. (2004). Lysophospholipid G protein-coupled receptors. The Journal of Biological Chemistry, 279(20), 20555–20558.
Arnot, M. I., Stotz, S. C., Jarvis, S. E., & Zamponi, G. W. (2000). Differential modulation of N-type 1B and P/Q-type 1A calcium channels by different G protein subunit isoforms. The Journal of Physiology, 527, 203–212.
Arnoult, C., Lemos, J. R., & Florman, H. M. (1997). Voltage-dependent modulation of T-type calcium channels by protein tyrosine phosphorylation. The EMBO Journal, 16(7), 1593–1599.
Arnoult, C., Villaz, M., & Florman, H. M. (1998). Pharmacological properties of the T-type Ca2+ current mouse spermatogenic cells. Molecular Pharmacology, 53(6), 1104–1111.
Barrett, C., & Rittenhouse, A. (2000). Modulation of N-type calcium channel activity by G-proteins and protein kinase C. The Journal of General Physiology, 115(3), 277–286.
Barrett, P. Q., Lu, H. K., Colbran, R., Czernik, A., & Pancrazio, J. J. (2000). Stimulation of unitary T-type Ca2+ channel currents by calmodulin-dependent protein kinase II. American Journal of Physiology. Cell Physiology, 279(6), 48–46.
Bean, B. P. (1989). Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature, 340, 153–156.
Bear, M. F., Connors, B. W., & Paradiso, M. A. (2015). Neuroscience: Exploring the brain: Fourth edition. Jones & Bartlett Learning.
Bernheim, L., Beech, D., & Hille, B. (1991). A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons. Neuron, 6(6), 859–867.
Bkaily, G., Sculptoreanu, A., Wang, S., Nader, M., Hazzouri, K. M., Jacques, D., et al. (2005). Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells. Peptides, 26(8), 1410–1417.
Bolshakov, V., & Siegelbaum, S. (1994). Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science, 264(5162), 1148–1152.
Bonvallet, R., & Rougier, O. (1989). Existence of two calcium currents recorded at normal calcium concentrations in single frog atrial cells. Cell Calcium, 10(7), 499–508.
Bucci, G., Mochida, S., & Stephens, G. (2011). Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca2+ channel peptides. The Journal of Physiology, 589(13), 3085–3101.
Carabelli, V., D’Ascenzo, M., Carbone, E., Grassi, C. (2002). Nitric oxide inhibits neuroendocrine Ca(V)1 L-channel gating via cGMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells. The Journal of Physiology, 541(2), 351–366. https://doi.org/10.1113/jphysiol.2002.017749
Cairns, S., & Borrani, F. (2015). β-Adrenergic modulation of skeletal muscle contraction: Key role of excitation-contraction coupling. The Journal of Physiology, 593(21), 4713–4727.
Calin-Jageman, I., Yu, K., Hall, R., Mei, L., & Lee, A. (2007). Erbin enhances voltage-dependent facilitation of Ca(v)1.3 Ca2+ channels through relief of an autoinhibitory domain in the Ca(v)1.3 alpha1 subunit. The Journal of Neuroscience, 27(6), 1374–1385.
Campbell, V., Berrow, N. S., Fitzgerald, E. M., Brickley, K., & Dolphin, A. C. (1995). Inhibition of the interaction of G protein G(o) with calcium channels by the calcium channel beta-subunit in rat neurones. The Journal of Physiology, 485, 365–372.
Canti, C., Page, K. M., Stephens, G. J., & Dolphin, A. C. (1999). Identification of residues in the N terminus of alpha1B critical for inhibition of the voltage-dependent calcium channel by Gbeta gamma. The Journal of Neuroscience, 19, 6855–6864.
Canti, C., Bogdanov, Y., & Dolphin, A. C. (2000). Interaction between G proteins and accessory subunits in the regulation of 1B calcium channels in Xenopus oocytes. The Journal of Physiology, 527, 419–432.
Carabelli, V., Lovallo, M., Magnelli, V., Zucker, H., & Carbone, E. (1996). Voltage-dependent modulation of single N-Type Ca2+ channel kinetics by receptor agonists in IMR32 cells. Biophysical Journal, 70(5), 2144–2154.
Cataldi, M., Gaudino, A., Lariccia, V., Russo, M., Amoroso, S., Di Renzo, G., et al. (2004). Imatinib-mesylate blocks recombinant T-type calcium channels expressed in human embryonic kidney-293 cells by a protein tyrosine kinase-independent mechanism. The Journal of Pharmacology and Experimental Therapeutics, 309(1), 208–215.
Catterall, W. A. (1999). Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Annals of the New York Academy of Sciences, 868, 144–159.
Catterall, W. A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annual Review of Cell and Developmental Biology, 16, 521–555.
Cesetti, T., Hernández-Guijo, J., Baldelli, P., Carabelli, V., & Carbone, E. (2003). Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. The Journal of Neuroscience, 23(1), 73–83.
Chemin, J., Monteil, A., Perez-Reyes, E., Nargeot, J., & Lory, P. (2001). Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. The EMBO Journal, 20(24), 7033–7040.
Chemin, J., Mezghrani, A., Bidaud, I., Dupasquier, S., Marger, F., Barrère, C., et al. (2007). Temperature-dependent modulation of CaV3 T-type calcium channels by protein kinases C and A in mammalian cells. The Journal of Biological Chemistry, 282(45), 32710–32718.
Chen, J., DeVivo, M., Dingus, J., Harry, A., Li, J., Sui, J., et al. (1995). A region of adenylyl cyclase 2 critical for regulation by G protein beta gamma subunits. Science, 268, 1166–1169.
Chen, C., Xu, R., Clarke, I. J., Ruan, M., Loneragan, K., & Roh, S. G. (2000). Diverse intracellular signalling systems used by growth hormone-releasing hormone in regulating voltage-gated Ca2+ or K+ channels in pituitary somatotropes. Immunology and Cell Biology, 78(4), 356–368.
Cooper, C., Arnot, M., Feng, Z., Jarvis, S., Hamid, J., & Zamponi, G. (2000). Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. The Journal of Biological Chemistry, 275(52), 40777–40781.
Currie, K. P. M. (2010). G protein inhibition of CaV2 calcium channels. Channels, 4(6), 497–509.
Currie, K., & Fox, A. (2002). Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms. The Journal of Physiology, 539(2), 419–431.
De Waard, M., Witcher, D., Pragnell, M., Liu, H., & Campbell, K. (1995). Properties of the alpha 1-beta anchoring site in voltage-dependent Ca2+ channels. The Journal of Biological Chemistry, 270(20), 12056–12064.
De Waard, M., Liu, H., Walker, D., Scott, V. E., Gurnett, C. A., & Campbell, K. P. (1997). Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature, 385, 446–450.
De Waard, M., Hering, J., Weiss, N., & Feltz, A. (2005). How do G proteins directly control neuronal Ca2+ channel function? Trends in Pharmacological Sciences, 26(8), 427–436.
Delmas, P., Coste, B., Gamper, N., & Shapiro, M. (2005). Phosphoinositide lipid second messengers: New paradigms for calcium channel modulation. Neuron, 47(2), 179–182.
DeMaria, C., Soong, T., Alseikhan, B., Alvania, R., & Yue, D. (2001). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature, 411(6836), 484–489.
DePuy, S. D., Yao, J., Hu, C., McIntire, W., Bidaud, I., Lory, P., et al. (2006). The molecular basis for T-type Ca2+ channel inhibition by G protein beta2gamma2 subunits. Proceedings of the National Academy of Sciences, 103(39), 14590–14595.
Doering, C. J., Kisilevsky, A. E., Feng, Z. P., Arnot, M. I., Peloquin, J., Hamid, J., et al. (2004). A single G beta subunit locus controls cross-talk between protein kinase C and G protein regulation of N-type calcium channels. The Journal of Biological Chemistry, 279, 29709–29717.
Dresviannikov, A., Page, K., Leroy, J., Pratt, W., & Dolphin, A. (2009). Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Pflügers Archiv, 457(4), 743–756.
Drolet, P., Bilodeau, L., Chorvatova, A., Laflamme, L., Gallo-Payet, N., & Payet, M. D. (1997). Inhibition of the T-type Ca2+ current by the dopamine D1 receptor in rat adrenal glomerulosa cells: Requirement of the combined action of the G betagamma protein subunit and cyclic adenosine 3′,5′-monophosphate. Molecular Endocrinology, 11(4), 503–514.
Dunlap, K., & Fischbach, G. (1978). Neurotransmitters decrease the calcium ocmponent of sensory neurone action potentials. Nature, 276(5690), 837–839.
Elmslie, K. (2003). Neurotransmitter modulation of neuronal calcium channels. Journal of Bioenergetics and Biomembranes, 35(6), 477–489.
Elmslie, K. S., & Jones, S. W. (1994). Concentration dependence of neurotransmitter effects on calcium current kinetics in frog sympathetic neurones. The Journal of Physiology, 481, 35–46.
Emrick, M., Sadilek, M., Konoki, K., & Catterall, W. (2010). Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18712–18717.
Evans, R. M., You, H., Hameed, S., Altier, C., Mezghrani, A., Bourinet, E., et al. (2010). Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. The Journal of Biological Chemistry, 285(2), 1032–1040.
Feng, Z., Arnot, M., Doering, C., & Zamponi, G. (2001). Calcium channel beta subunits differentially regulate the inhibition of N-type channels by individual Gbeta isoforms. The Journal of Biological Chemistry, 276(48), 45051–45058.
Fern, R. J., Hahm, M. S., Lu, H. K., Liu, L. P., Gorelick, F. S., & Barrett, P. Q. (1995). Ca2+/calmodulin-dependent protein kinase II activation and regulation of adrenal glomerulosa Ca2+ signaling. The American Journal of Physiology, 269(6), 751–760.
Forscher, P., Oxford, G. S., & Schulz, D. (1986). Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. The Journal of Physiology, 379, 131–144.
Furukawa, T., Ito, H., Nitta, J., Tsujino, M., Adachi, S., Hiroe, M., et al. (1992). Endothelin-1 enhances calcium entry through T-type calcium channels in cultured neonatal rat ventricular myocytes. Circulation Research, 71(5), 1242–1253.
Gamper, N., Reznikov, V., Yamada, Y., Yang, J., & Shapiro, M. (2004). Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. The Journal of Neuroscience, 24(48), 10980–10992.
Gray, P., Scott, J., & Catterall, W. (1998). Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Current Opinion in Neurobiology, 8(3), 330–334.
Grazzini, E., Durroux, T., Payet, M. D., Bilodeau, L., Gallo-Payet, N., & Guillon, G. (1996). Membrane-delimited G protein-mediated coupling between V(1a) vasopressin receptor and dihydropyridine binding sites in rat glomerulosa cells. Molecular Pharmacology, 50(5), 1273–1283.
Gross, R. A., Moises, H. C., Uhler, M. D., & Macdonald, R. L. (1990a). Dynorphin a and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7025–7029.
Gross, R. A., Uhler, M. D., & Macdonald, R. L. (1990b). The cyclic AMP-dependent protein kinase catalytic subunit selectively enhances calcium currents in rat nodose neurones. The Journal of Physiology, 429(1), 483–496.
Haeseleer, F., Imanishi, Y., Maeda, T., Possin, D., Maeda, A., Lee, A., et al. (2004). Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature Neuroscience, 7(10), 1079–1087.
Hamid, J., Nelson, D., Spaetgens, R., Dubel, S., Snutch, T., & Zamponi, G. (1999). Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. The Journal of Biological Chemistry, 274(10), 6195–6202.
Harraz, O. F., & Welsh, D. G. (2013). Protein kinase A regulation of T-type Ca2+ channels in rat cerebral arterial smooth muscle. Journal of Cell Science, 126(13), 2944–2954.
Harvey, R., & Hell, J. (2013). CaV1.2 signaling complexes in the heart. Journal of Molecular and Cellular Cardiology, 58(1), 143–152.
Heidelberger, R., Thoreson, W. B., & Witkovsky, P. (2005). Synaptic transmission at retinal ribbon synapses. Progress in Retinal and Eye Research, 24(6), 682–720.
Herlitze, S., Garcia, D. E., Mackie, K., Hille, B., Scheuer, T., & Catterall, W. A. (1996). Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature, 380(6571), 258–262. https://doi.org/10.1038/380258a0
Herlitze, S., Hockerman, G. H., Scheuer, T., & Catterall, W. A. (1997). Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha1A subunit. Proceedings of the National Academy of Sciences of the United States of America, 94(4), 1512–1516.
Herlitze, S., Zhong, H., Scheuer, T., & Catterall, W. A. (2001). Allosteric modulation of Ca2+ channels by G proteins, voltage-dependent facilitation, protein kinase C, and Ca(v)beta subunits. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4699–4704.
Hermosilla, T., Moreno, C., Itfinca, M., Altier, C., Armisén, R., Stutzin, A., et al. (2011). L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes. Channels (Austin, Tex.), 5(3), 280–286.
Hernádez-López, S., Tkatch, T., Perez-Garci, E., Galarraga, E., Bargas, J., Hamm, H., et al. (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-Calcineurin-signaling cascade. The Journal of Neuroscience, 20(24), 8987–8995.
Hernández-Ochoa, E., García-Ferreiro, R., & García, D. (2007a). G protein activation inhibits gating charge movement in rat sympathetic neurons. American Journal of Physiology. Cell Physiology, 292(6), C2226–C2238.
Hernández-Ochoa, E., García-Ferreiro, R., & García, D. (2007b). G protein activation inhibits gating charge movement in rat sympathetic neurons. American Journal of Physiology. Cell Physiology, 292(6), 2226–2238.
Hildebrand, M. E., David, L. S., Hamid, J., Mulatz, K., Garcia, E., Zamponi, G. W., et al. (2007). Selective inhibition of Cav3.3 T-type calcium channels by Gαq/11-coupled muscarinic acetylcholine receptors. The Journal of Biological Chemistry, 282(29), 21043–21055.
Hille, B. (1994). Modulation of ion-channel function by G-protein-coupled receptors. Trends in Neurosciences, 17(12), 531–536.
Hille, B., Dickson, E., Kruse, M., Vivas, O., & Suh, B. (2015). Phosphoinositides regulate ion channels. Biochimica et Biophysica Acta, 1851(6), 844–856.
Hockberger, P., Toselli, M., Swandulla, D., & Lux, H. D. (1989). A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature, 338(6213), 340–342.
Howe, A., & Surmeier, D. (1995). Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways. The Journal of Neuroscience, 15(1), 458–469.
Hu, C., DePuy, S. D., Yao, J., McIntire, W. E., & Barrett, P. Q. (2009). Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. The Journal of Biological Chemistry, 284(12), 7465–7473.
Hulme, J., Ahn, M., Hauschka, S., Scheuer, T., & Catterall, W. (2002). A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. The Journal of Biological Chemistry, 277(6), 4079–4087.
Hümmer, A., Delzeith, O., Gomez, S. R., Moreno, R. L., Mark, M. D., & Herlitze, S. (2003). Competitive and synergistic interactions of G protein beta(2) and Ca(2+) channel beta(1b) subunits with Ca(v)2.1 channels, revealed by mammalian two-hybrid and fluorescence resonance energy transfer measurements. The Journal of Biological Chemistry, 278(49), 49386–49400.
Iftinca, M., Hamid, J., Chen, L., Varela, D., Tadayonnejad, R., Altier, C., et al. (2007). Regulation of T-type calcium channels by Rho-associated kinase. Nature Neuroscience, 10(7), 854–860.
Ikeda, S. R. (1996). Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature, 380(6571), 255–258.
Jenkins, M., Christel, C., Jiao, Y., Abiria, S., Kim, K., Usachev, Y., et al. (2010). Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. The Journal of Neuroscience, 30(15), 5125–5135.
Johnson, B., Scheuer, T., & Catterall, W. (2005). Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4191–4196.
Jones, S. W., & Elmslie, K. S. (1997). Transmitter modulation of neuronal calcium channels. The Journal of Membrane Biology, 155, 1–10.
Kang, D., Hur, C. G., Park, J. Y., Han, J., & Hong, S. G. (2007). Acetylcholine increases Ca2+ influx by activation of CaMKII in mouse oocytes. Biochemical and Biophysical Research Communications, 360(2), 476–482.
Kasai, H. (1992). Voltage- and time-dependent inhibition of neuronal calcium channels by a GTP-binding protein in a mammalian cell line. The Journal of Physiology, 448(1), 189–209.
Katchman, A., Yang, L., Zakharov, S. I., Kushner, J., Abrams, J., Chen, B. X., et al. (2017). Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of CaV1.2 in the heart. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 9194–9199.
Katz, M., Subramaniam, S., Chomsky-Hecht, O., Tsemakhovich, V., Flockerzi, V., Klussmann, E., et al. (2021). Reconstitution of β-adrenergic regulation of Ca V 1.2: Rad-dependent and Rad-independent protein kinase A mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2100021118.
Kaur, G., Pinggera, A., Ortner, N., Lieb, A., Sinnegger-Brauns, M., Yarov-Yarovoy, V., et al. (2015). A polybasic plasma membrane binding motif in the I-II linker stabilizes voltage-gated CaV1.2 calcium channel function. The Journal of Biological Chemistry, 290(34), 21086–21100.
Kawai, F., & Miyachi, E. I. (2001). Modulation by cGMP of the voltage-gated currents in newt olfactory receptor cells. Neuroscience Research, 39(3), 327–337.
Kawai, F., Kurahashi, T., & Kaneko, A. (1999). Adrenaline enhances odorant contrast by modulating signal encoding in olfactory receptor cells. Nature Neuroscience, 2(2), 133–138.
Keja, J. A., Stoof, J. C., & Kits, K. S. (1992). Dopamine D2 receptor stimulation differentially affects voltage-activated calcium channels in rat pituitary melanotropic cells. The Journal of Physiology, 450(1), 409–435.
Kim, J. A., Park, J. Y., Kang, H. W., Huh, S. U., Jeong, S. W., & Lee, J. H. (2006). Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A. The Journal of Pharmacology and Experimental Therapeutics, 318(1), 230–237.
Kim, H. H., Lee, K. H., Lee, D., Han, Y. E., Lee, S. H., Sohn, J. W., & Ho, W. K. (2015). Costimulation of AMPA and metabotropic glutamate receptors underlies phospholipase C activation by glutamate in hippocampus. The Journal of Neuroscience, 35(16), 6401–6412. https://doi.org/10.1523/JNEUROSCI.4208-14.2015
Kim, Y., Park, M. K., Uhm, D. Y., & Chung, S. (2007). Modulation of T-type Ca2+ channels by corticotropin-releasing factor through protein kinase C pathway in MN9D dopaminergic cells. Biochemical and Biophysical Research Communications, 358(3), 796–801.
Kitano, J., Nishida, M., Itsukaichi, Y., Minami, I., Ogawa, M., Hirano, T., et al. (2003). Direct interaction and functional coupling between metabotropic glutamate receptor subtype 1 and voltage-sensitive Cav2.1 Ca2+ channel. The Journal of Biological Chemistry, 278(27), 25101–25108.
Kobrinsky, E. M., Pearson, H. A., & Dolphin, A. C. (1994). Low- and high-voltage-activated calcium channel currents and their modulation in the dorsal root ganglion cell line ND7-23. Neuroscience, 58(3), 539–552.
Kurejová, M., & Lacinová, L. (2006 Feb). Effect of protein tyrosine kinase inhibitors on the current through the CaV3.1 channel. Archives of Biochemistry and Biophysics, 446(1), 20–27.
Lacinova, L., Mallmann, R. T., Jurkovičová-Tarabová, B., & Klugbauer, N. (2020). Modulation of voltage-gated CaV2.2 Ca2+ channels by newly identified interaction partners. Channels, 14(1), 380–392.
Lee, H. K., & Elmslie, K. S. (2000). Reluctant gating of single N-type calcium channels during neurotransmitter-induced inhibition in bullfrog sympathetic neurons. The Journal of Neuroscience, 20, 3115–3128.
Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., et al. (1999). Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature, 399(6732), 155–159.
Lee, A., Scheuer, T., & Catterall, W. A. (2000). Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. The Journal of Neuroscience, 20(18), 6830–6838.
Lemke, T., Welling, A., Christel, C. J., Blaich, A., Bernhard, D., Lenhardt, P., et al. (2008). Unchanged β-adrenergic stimulation of cardiac L-type calcium channels in Cav1.2 phosphorylation site S1928A mutant mice. The Journal of Biological Chemistry, 283(50), 34738–34744.
Lenglet, S., Louiset, E., Delarue, C., Vaudry, H., & Contesse, V. (2002). Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology, 143(5), 1748–1760.
Leroy, J., Richards, M., Butcher, A., Nieto-Rostro, M., Pratt, W., Davies, A., et al. (2005). Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for beta1 but not for palmitoylated beta2, implicating an additional binding site in the regulation of channel voltage-dependent properties. The Journal of Neuroscience, 25(30), 6984–6996.
Li, Y., Wang, F., Zhang, X., Qi, Z., Tang, M., Szeto, C., et al. (2012). ß-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A. PLoS One, 7(7), e39965.
Li, Q., Zhang, Y., Wu, N., Yin, N., Sun, X. H., & Wang, Z. (2019). Activation of somatostatin receptor 5 suppresses T-type Ca2+ channels through NO/cGMP/PKG signaling pathway in rat retinal ganglion cells. Neuroscience Letters, 708, 134337.
Lin, Z., Haus, S., Edgerton, J., & Lipscombe, D. (1997). Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron, 18, 153–166.
Liu, B., Hill, S. J., & Khan, R. N. (2005). Oxytocin inhibits T-type calcium current of human decidual stromal cells. The Journal of Clinical Endocrinology and Metabolism, 90(7), 4191–4197.
Liu, K., Jiang, D., Zhang, T., Tao, J., Shen, L., & Sun, X. (2011). Activation of growth hormone secretagogue type 1a receptor inhibits T-type Ca2+ channel currents through pertussis toxin-sensitive novel protein kinase C pathway in mouse spermatogenic cells. Cellular Physiology and Biochemistry, 27(5), 613–624.
Liu, G., Papa, A., Katchman, A., Zakharov, S., Roybal, D., Hennessey, J., et al. (2020). Mechanism of adrenergic Ca V 1.2 stimulation revealed by proximity proteomics. Nature, 577(7792), 695–700.
Lledo, P. M., Israel, J. M., & Vincent, J. D. (1990a). A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium currents by dopamine in rat lactotrophs. Brain Research, 528(1), 143–147.
Lledo, P. M., Legendre, P., Israel, J. M., & Vincent, J. D. (1990b). Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology, 127(3), 990–1001.
Lledo, P. M., Homburger, V., Bockaert, J., & Vincent, J. D. (1992). Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron, 8(3), 455–463.
Louiset, E., Duparc, C., Lenglet, S., Gomez-Sanchez, C. E., & Lefebvre, H. (2017). Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Molecular and Cellular Endocrinology, 441, 99–107.
Lu, H. K., Fern, R. J., Nee, J. J., & Barrett, P. Q. (1994). Ca2+-dependent activation of T-type Ca2+ channels by calmodulin- dependent protein kinase II. The American Journal of Physiology, 267(1), 183–189.
Lu, H. K., Fern, R. J., Luthin, D., Linden, J., Liu, L. P., Cohen, C. J., et al. (1996). Angiotensin II stimulates T-type Ca2+ channel currents via activation of a G protein, G(i). The American Journal of Physiology, 271(4), 1340–1349.
Mahapatra, S., Calorio, C., Vandael, D., Marcantoni, A., Carabelli, V., & Carbone, E. (2012). Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium, 51(3–4), 321–330.
Mandy, L. R. C., & Rittenhouse, A. R. (2009). Arachidonic acid inhibition of L-type calcium (Ca V 1.3b) channels varies with accessory Ca Vβ subunits. The Journal of General Physiology, 133(4), 387–403.
Marchetti, C., & Brown, A. M. (1988). Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. The American Journal of Physiology, 254(1), 206–210.
Marchetti, C., Carbone, E., & Lux, H. D. (1986). Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflügers Archiv, 406(2), 104–111.
Margeta-Mitrovic, M., Grigg, J. J., Koyano, K., Nakajima, Y., & Nakajima, S. (1997). Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons. Journal of Neurophysiology, 78(3), 1341–1352.
Mark, M. D., Wittemann, S., & Herlitze, S. (2000). G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins. The Journal of Physiology, 528(1), 65–77.
Masland, R. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.
Masuho, I., Skamangas, N., Muntean, B., & Martemyanov, K. (2021). Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Systems, 12(4), 324–337.
McCarthy, R. T., Isales, C., & Rasmussen, H. (1993). T-type calcium channels in adrenal glomerulosa cells: GTP-dependent modulation by angiotensin II. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3260–3264.
Meves, H. (2005). The effect of prostaglandin E1 on ion currents of NG108-15 cells. Prostaglandins & Other Lipid Mediators, 76(1–4), 117–132.
Meza, U., & Adams, B. (1998). G-Protein-dependent facilitation of neuronal alpha1A, alpha1B, and alpha1E Ca channels. The Journal of Neuroscience, 18(14), 5240–5252.
Mochida, S. (2018). Presynaptic calcium channels. Neuroscience Research, 127, 33–44.
Morikawa, H., Fukuda, K., Mima, H., Shoda, T., Kato, S., & Mori, K. (1998). Tyrosine kinase inhibitors suppress N-type and T-type Ca2+ channel currents in NG108-15 cells. Pflügers Archiv, 436(1), 127–132.
Murali, S., Napier, I., Rycroft, B., & Christie, M. (2012). Opioid-related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface N-type calcium channels. The Journal of Physiology, 590(7), 1655–1667.
Murphy, B., & Scott, J. (1998). Functional anchoring of the cAMP-dependent protein kinase. Trends in Cardiovascular Medicine, 8(2), 89–95.
Nanou, E., & Catterall, W. (2018). Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron, 98(3), 466–481.
Nussinovitch, I., & Kleinhaus, A. L. (1992). Dopamine inhibits voltage-activated calcium channel currents in rat pars intermedia pituitary cells. Brain Research, 574(1–2), 49–55.
Okamura, Y., Murata, Y., & Iwasaki, H. (2009). Voltage-sensing phosphatase: Actions and potentials. The Journal of Physiology, 587(3), 513–520.
Oldham, W., & Hamm, H. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews. Molecular Cell Biology, 9(1), 60–71.
Olson, P. A., Tkatch, T., Hernandez-Lopez, S., Ulrich, S., Ilijic, E., Mugnaini, E., et al. (2005). G-protein-coupled receptor modulation of striatal Cav1.3 L-type Ca2+ channels is dependent on a shank-binding domain. The Journal of Neuroscience, 25(5), 1050–1062.
Osipenko, O. N., Várnai, P., Mike, A., Spät, A., & Vizi, E. S. (1994). Dopamine blocks T-type calcium channels in cultured rat adrenal. Endocrinology, 134(1), 511–514.
Page, K., Cantí, C., Stephens, G., Berrow, N., & Dolphin, A. (1998). Identification of the amino terminus of neuronal Ca2+ channel alpha1 subunits alpha1B and alpha1E as an essential determinant of G-protein modulation. The Journal of Neuroscience, 18(13), 4815–4824.
Page, K., Heblich, F., Margas, W., Pratt, W., Nieto-Rostro, M., Chaggar, K., et al. (2010). N terminus is key to the dominant negative suppression of Ca(V)2 calcium channels: Implications for episodic ataxia type 2. The Journal of Biological Chemistry, 285(2), 835–844.
Pan, J. Q., & Lipscombe, D. (2000). Alternative splicing in the cytoplasmic II-III loop of the N-type Ca channel alpha 1B subunit: Functional differences are beta subunit-specific. The Journal of Neuroscience, 20, 4769–4775.
Papa, A., Kushner, J., Hennessey, J. A., Katchman, A. N., Zakharov, S. I., Chen, B. X., et al. (2021). Adrenergic CaV1.2 activation via Rad phosphorylation converges at α1CI-II loop. Circulation Research, 128(1), 76–88.
Park, J. Y., Jeong, S. W., Perez-Reyes, E., & Lee, J. H. (2003). Modulation of Cav3.2 T-type Ca2+ channels by protein kinase C. FEBS Letters, 547(1–3), 37–42.
Park, J. Y., Kang, H. W., Moon, H. J., Huh, S. U., Jeong, S. W., Soldatov, N. M., et al. (2006). Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. The Journal of Physiology, 577(2), 513–523.
Patriarchi, T., Qian, H., Di Biase, V., Malik, Z., Chowdhury, D., Price, J., et al. (2016). Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the β2 adrenergic receptor. The EMBO Journal, 35(12), 1330–1345.
Patriarchi, T., Buonarati, O., & Hell, J. (2018). Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. The EMBO Journal, 37(20), e99771.
Pemberton, K., Hill-Eubanks, L., & Penelope, J. S. (2000). Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3T3 cells. Pflügers Archiv, 440(3), 452–461.
Pfeiffer-Linn, C., & Lasater, E. M. (1993). Dopamine modulates in a differential fashion T- and L-type calcium currents in bass retinal horizontal cells. The Journal of General Physiology, 102(2), 277–294.
Pfeiffer-Linn, C. L., & Lasater, E. M. (1998). Multiple second-messenger system modulation of voltage-activated calcium currents in teleost retinal horizontal cells. Journal of Neurophysiology, 80(1), 377–388.
Polo-Parada, L., Chan, S. A., & Smith, C. (2006). An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells. Neuroscience, 143(2), 445–459.
Pragnell, M., Sakamoto, J., Jay, S. D., & Campbell, K. P. (1991). Cloning and tissue-specific expression of the brain calcium channel beta-subunit. FEBS Letters, 291, 253–258.
Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., & Campbell, K. P. (1994). Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature, 368, 67–70.
Proft, J., & Weiss, N. (2015). G protein regulation of neuronal calcium channels: Back to the future. Molecular Pharmacology, 87(6), 890–906.
Qian, W.-J., Yin, N., Gao, F., Miao, Y., Li, Q., Li, F., et al. (2017). Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca2+ channels in rat retinal ganglion cells. Neuropharmacology, 124, 143–156.
Qin, N., Platano, D., Olcese, R., Stefani, E., & Birnbaumer, L. (1997). Direct interaction of gbetagamma with a C-terminal Gbetagamma-binding domain of the Ca2+ channel alpha1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 94, 8866–8871.
Rangel, A., Sánchez-Armass, S., & Meza, U. (2010). Protein kinase C-mediated inhibition of recombinant T-type CaV3.2 channels by neurokinin 1 receptors. Molecular Pharmacology, 77(2), 202–210.
Rebolledo-Antúnez, S., Farías, J., Arenas, I., & García, D. (2009). Gating charges per channel of Ca(V)2.2 channels are modified by G protein activation in rat sympathetic neurons. Archives of Biochemistry and Biophysics, 486(1), 51–57.
Rettig, J., Sheng, Z. H., Kim, D. K., Hodson, C. D., Snutch, T. P., & Catterall, W. A. (1996). Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proceedings of the National Academy of Sciences of the United States of America, 93, 7363–7368.
Roberts-Crowley, M., & Rittenhouse, A. (2018). Modulation of Ca V 1.3b L-type calcium channels by M 1 muscarinic receptors varies with Ca V β subunit expression. BMC Research Notes, 11(1), 681.
Rosenthal, W., Hescheler, J., Eckert, R., Offermanns, S., Schmidt, A., Hinsch, K. D., et al. (1990). Pertussis toxin-sensitive G-proteins: Participation in the modulation of voltage-dependent Ca2+ channels by hormones and neurotransmitters. Advances in Second Messenger and Phosphoprotein Research, 24, 89–94.
Rossier, M. F., Aptel, H. B. C., Python, C. P., Burnay, M. M., Vallotton, M. B., & Capponi, A. M. (1995). Inhibition of low threshold calcium channels by angiotensin II in adrenal glomerulosa cells through activation of protein kinase C. The Journal of Biological Chemistry, 270(25), 15137–15142.
Roybal, D., Hennessey, J. A., & Marx, S. O. (2020). The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca2+ channels. Channels, 14(1), 123.
Sanderson, J., & Dell’Acqua, M. (2011). AKAP signaling complexes in regulation of excitatory synaptic plasticity. The Neuroscientist, 17(3), 321–336.
Sandoval, A., Duran, P., Gandini, M., Andrade, A., Almanza, A., Kaja, S., et al. (2017). Regulation of L-type Ca V 1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway. Cell Calcium, 66, 1–9.
Sang, L., Dick, I., & Yue, D. (2016). Protein kinase A modulation of CaV1.4 calcium channels. Nature Communications, 7, 12239.
Schmitt, H., & Meves, H. (1995). Modulation of neuronal calcium channels by arachidonic acid and related substances. The Journal of Membrane Biology, 145(3), 233–244.
Schrier, A. D., Wang, H., Talley, E. M., Perez-Reyes, E., & Barrett, P. Q. (2001). α1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. The American Journal of Physiology, 280(2), 265–272.
Schroeder, J. E., & McCleskey, E. W. (1993). Inhibition of Ca2+ currents by a μ-opioid in a defined subset of rat sensory neurons. The Journal of Neuroscience, 13(2), 867–873.
Schroeder, J. E., Fischbach, P. S., & McCleskey, E. W. (1990). T-type calcium channels: Heterogeneous expression in rat sensory neurons and selective modulation by phorbol esters. The Journal of Neuroscience, 10(3), 947–951.
Schroeder, J. E., Fischbach, P. S., Zheng, D., & McCleskey, E. W. (1991). Activation of μ opioid receptors inhibits transient high- and low-threshold Ca 2+ currents, but spares a sustained current. Neuron, 6(1), 13–20.
Scott, R. H., Wootton, J. F., & Dolphin, A. C. (1990). Modulation of neuronal T-type calcium channel currents by photoactivation of intracellular guanosine 5′-0(3-thio) triphosphate. Neuroscience, 38(2), 285–294.
Sekiguchi, F., Aoki, Y., Nakagawa, M., Kanaoka, D., Nishimoto, Y., Tsubota-Matsunami, M., et al. (2013). AKAP-dependent sensitization of Cav3.2 channels via the EP 4 receptor/cAMP pathway mediates PGE2-induced mechanical hyperalgesia. British Journal of Pharmacology, 168(3), 734–745.
Shan, H. Q., Hammarback, J. A., & Godwin, D. W. (2013). Ethanol inhibition of a T-type Ca2+ channel through activity of protein kinase C. Alcoholism, Clinical and Experimental Research, 37(8), 1333–1342.
Sheng, Z. H., Rettig, J., Takahashi, M., & Catterall, W. A. (1994). Identification of a syntaxin-binding site on N-type calcium channels. Neuron, 13, 1303–1313.
Sheng, Z. H., Westenbroek, R. E., & Catterall, W. A. (1998). Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery. Journal of Bioenergetics and Biomembranes, 30(4), 335–345.
Si, W., Zhang, Y., Chen, K., Hu, D., Qian, Z., Gong, S., et al. (2018). Fibroblast growth factor type 1 receptor stimulation of T-type Ca 2+ channels in sensory neurons requires the phosphatidylinositol 3-kinase and protein kinase A pathways, independently of Akt. Cellular Signalling, 45, 93–101.
Stanika, R., Flucher, B., & Obermair, G. (2015). Regulation of postsynaptic stability by the L-type calcium channel CaV1.3 and its interaction with PDZ proteins. Current Molecular Pharmacology, 8(1), 95–101.
Stella, S. L., Hu, W. D., Vila, A., & Brecha, N. C. (2007). Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina. Journal of Neuroscience Research, 85(5), 1126–1137.
Stotz, S., & Zamponi, G. (2001). Structural determinants of fast inactivation of high voltage-activated Ca(2+) channels. Trends in Neurosciences, 24(3), 176–182.
Suh, B., Leal, K., & Hille, B. (2010). Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron, 67(2), 224–238.
Suh, B., Kim, D., Falkenburger, B., & Hille, B. (2012). Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3161–3166.
Swartz, K. (1993). Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons: Disruption of G protein-mediated inhibition. Neuron, 11(2), 305–320.
Talavera, K., Staes, M., Janssens, A., Droogmans, G., & Nilius, B. (2004). Mechanism of arachidonic acid modulation of the T-type Ca2+ channel α1G. The Journal of General Physiology, 124(3), 225–238.
Tao, J., Hildebrand, M. E., Liao, P., Mui, C. L., Tan, G., Li, S., et al. (2008). Activation of corticotropin-releasing factor receptor 1 selectively inhibits CaV3.2 T-type calcium channels. Molecular Pharmacology, 73(6), 1596–1609.
Tao, J., Zhang, Y., Li, S., Sun, W., & Soong, T. W. (2009). Tyrosine kinase-independent inhibition by genistein on spermatogenic T-type calcium channels attenuates mouse sperm motility and acrosome reaction. Cell Calcium, 45(2), 133–143.
Tedford, H. W., Kisilevsky, A. E., Vieira, L. B., Varela, D., Chen, L., & Zamponi, G. W. (2010). Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition. Molecular Brain, 3, 6.
Tennakoon, M., Senarath, K., Kankanamge, D., Ratnayake, K., Wijayaratna, D., Olupothage, K., et al. (2021). Subtype-dependent regulation of Gβγ signalling. Cellular Signalling, 82, 109947.
Thoreson, W. B. (2021). Transmission at rod and cone ribbon synapses in the retina. Pflügers Archiv, 473(9), 1469–1491.
Toselli, M., & Lux, H. D. (1989). Opposing effects of acetylcholine on the two classes of voltage-dependent calcium channels in hippocampal neurons. EXS, 57, 97–103.
Tseng, G. N., & Boyden, P. A. (1991). Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. The American Journal of Physiology, 261(2), 364–379.
Vandael, D. H. F., Mahapatra, S., Calorio, C., Marcantoni, A., & Carbone, E. (2013). Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: Emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking. Biochimica et Biophysica Acta, 1828(7), 1608–1618.
Waldner, D., Bech-Hansen, N., & Stell, W. (2018). Channeling vision: Ca V 1.4-A critical link in retinal signal transmission. BioMed Research International, 2018, 7272630.
Wang, F., Zhang, Y., Jiang, X., Zhang, Y., Zhang, L., Gong, S., et al. (2011). Neuromedin U inhibits T-type Ca2+ channel currents and decreases membrane excitability in small dorsal root ganglia neurons in mice. Cell Calcium, 49(1), 12–22.
Wang, H., Wei, Y., Pu, Y., Jiang, D., Jiang, X., Zhang, Y., et al. (2019). Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Science Signaling, 12(600), eaaw2300.
Weiss, S., & Dascal, N. (2015). Molecular aspects of modulation of L-type calcium channels by protein kinase C. Current Molecular Pharmacology, 8(1), 43–53.
Weiss, N., Tadmouri, A., Mikati, M., Ronjat, M., & De Waard, M. (2007). Importance of voltage-dependent inactivation in N-type calcium channel regulation by G-proteins. Pflügers Archiv, 454(1), 115–129.
Welsby, P. J., Wang, H., Wolfe, J. T., Colbran, R. J., Johnson, M. L., & Barrett, P. Q. (2003). A mechanism for the direct regulation of T-type calcium channels by Ca 2+/calmodulin-dependent kinase II. The Journal of Neuroscience, 23(31), 10116–10121.
Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological Reviews, 85(4), 1159–1204.
Williams, P. J., MacVicar, B. A., & Pittman, Q. J. (1990). Synaptic modulation by dopamine of calcium currents in rat pars intermedia. The Journal of Neuroscience, 10(3), 757–763.
Witcher, D., De Waard, M., Liu, H., Pragnell, M., & Campbell, K. (1995). Association of native Ca2+ channel beta subunits with the alpha 1 subunit interaction domain. The Journal of Biological Chemistry, 270(30), 18088–18093.
Witkovsky, P. (2004). Dopamine and retinal function. Documenta Ophthalmologica, 108(1), 17–39.
Wolfe, J. T., Wang, H., Perez-Reyes, E., & Barrett, P. Q. (2002). Stimulation of recombinant CaV3.2, T-type, Ca2+ channel currents by CaMKIIγC. The Journal of Physiology, 538(2), 343–355.
Wolfe, J. T., Wang, H., Howard, J., Garrison, J. C., & Barrett, P. Q. (2003). T-type calcium channel regulation by specific G-protein betagamma subunits. Nature, 424(6945), 209–213.
Wu, X., Kushwaha, N., Albert, P., & Penington, N. (2002). A critical protein kinase C phosphorylation site on the 5-HT(1A) receptor controlling coupling to N-type calcium channels. The Journal of Physiology, 538(1), 41–51.
Xiao, R., Zhu, W., Zheng, M., Chakir, K., Bond, R., Lakatta, E., et al. (2004). Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends in Pharmacological Sciences, 25(7), 358–365.
Yu, H., Seo, J. B., Jung, S. R., Koh, D. S., & Hille, B. (2015). Noradrenaline upregulates T-type calcium channels in rat pinealocytes. The Journal of Physiology, 593(4), 887–904.
Yue, J., Zhang, Y., Li, X., Gong, S., Tao, J., & Jiang, X. (2014). Activation of G-protein-coupled receptor 30 increases t-type calcium currents in trigeminal ganglion neurons via the cholera toxin-sensitive protein kinase a pathway. Die Pharmazie, 69(11), 804–808.
Zamponi, G., & Currie, K. (2013). Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Biochimica et Biophysica Acta, 1828(7), 1629–1643.
Zamponi, G. W., & Snutch, T. P. (1998). Modulation of voltage-dependent calcium channels by G proteins. Current Opinion in Neurobiology, 8, 351–356.
Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., & Snutch, T. P. (1997). Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature, 385, 442–446.
Zamponi, G., Striessnig, J., Koschak, A., & Dolphin, A. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological Reviews, 67(4), 821–870.
Zhang, Y., Cribbs, L. L., & Satin, J. (2000). Arachidonic acid modulation of α1H, a cloned human T-type calcium channel. The American Journal of Physiology, 278(1), 184–193.
Zhang, Y., Zhang, L., Wang, F., Zhang, Y., Wang, J., Qin, Z., et al. (2011). Activation of M3 muscarinic receptors inhibits T-type Ca2+ channel currents via pertussis toxin-sensitive novel protein kinase C pathway in small dorsal root ganglion neurons. Cellular Signalling, 23(6), 1057–1067.
Zhang, L., Zhang, Y., Jiang, D., Reid, P. F., Jang, X., Qin, Z., et al. (2012). Alpha-cobratoxin inhibits T-type calcium currents through muscarinic M4 receptor and G o-protein βγ subunits-dependent protein kinase A pathway in dorsal root ganglion neurons. Neuropharmacology, 62(2), 1062–1072.
Zhang, Y., Qin, W., Qian, Z., Liu, X., Wang, H., Gong, S., et al. (2014). Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Science Signaling, 7(346), ra94.
Zhang, Y., Ji, H., Wang, J., Sun, Y., Qian, Z., Jiang, X., et al. (2018). Melatonin-mediated inhibition of Cav3.2 T-type Ca2+ channels induces sensory neuronal hypoexcitability through the novel protein kinase C-eta isoform. Journal of Pineal Research, 64(4), 12476.
Zühlke, R., Pitt, G., Tsien, R., & Reuter, H. (2000). Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. The Journal of Biological Chemistry, 275(28), 21121–21129.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mark, M.D., Schwitalla, J.C., Herlitze, S. (2022). Modulation of VGCCs by G-Protein Coupled Receptors and Their Second Messengers. In: Zamponi, G.W., Weiss, N. (eds) Voltage-Gated Calcium Channels . Springer, Cham. https://doi.org/10.1007/978-3-031-08881-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-08881-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08880-3
Online ISBN: 978-3-031-08881-0
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)