Skip to main content

5G Base Station Scheduling

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 496))

Abstract

5G base stations (BS) distribute resources to User Equipments (UEs) by dividing the BS’s spectrum into sub-channels of different sizes, and then allocate them to UE’s flows for uploading or downloading data based on time length, which may be a long or short duration. In a 4G-network BS, the spectrum of a resource block (RB) is 180 kHz, while in 5G, a BS spectrum is divided into numerologies, the size of which may be: 15, 30, 60, 120, and 240 kHz. The BS algorithm Scheduling and Resource Allocation (SRA) algorithms implemented in this study include Proportional Fairness (PF), Maximum-Largest Weighted Delay First (M-LWDF) and Exponential/Proportional Fairness (EXP/PF). We evaluate the performance of these algorithms in handling different types of packets, e.g., Real-Time (RT) flow, Non-Real-Time (NRT) flow, etc. The SRA algorithms are developed in the 5G-air-simulator, which is an open source C++-based simulator, to deliver eMBB, uRLLC and mMTC packets for analyzing performance of different applications. The parameters used include BS transmission speed, flow size, etc. The metrics parameters include packet delays and transmission fairness, etc. The goal is to use the most suitable SRA to transmit different types of packets for building independent network slices with different service characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vora, A., Kang, K.-D.: Effective 5G wireless downlink scheduling and resource allocation in cyber-physical systems. Technologies 6(4), 1–20 (2018)

    Article  Google Scholar 

  2. Abdel-Hadi, A., Clancy, C.: A utility proportional fairness approach for resource allocation in 4G-LTE. In: International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp. 1034–1040 (2014). https://doi.org/10.1109/ICCNC.2014.6785480

  3. Capozzi, F., Piro, G., Grieco, L.A., Boggia, G., Camarda, P.: Downlink packet scheduling in LTE cellular networks: key design issues and a survey. IEEE Commun. Surv. Tutor. 15, 678–700 (2012)

    Article  Google Scholar 

  4. Xian, Y.J., Tian, F.C., Xu, C.B., Yang, Y.: Analysis of M-LWDF fairness and an enhanced M-LWDF packet scheduling mechanism. J. China Univ. Posts Telecommun. 18(4), 82–88 (2011)

    Google Scholar 

  5. Basukala, R., Ramli, H.A.M., Sandrasegaran, K.: Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system. In: First Asian Himalayas International Conference on Internet, Kathmundu, Nepal, pp. 1–5 (2009)

    Google Scholar 

  6. Martiradonna, S., Grassi, A., Piro, G.: 5G-air-simulator: an open-source tool modeling the 5G air interface. Comput. Netw. 177, 107314 (2020)

    Google Scholar 

  7. Kawser, M., Farid, H., Hasin, A., Sadik, A., Razu, I.: Performance comparison between round robin and proportional f air scheduling methods for LTE. Int. J. Inf. Electron. Eng. 2, 678–681 (2012). https://doi.org/10.7763/IJIEE.2012.V2.186

    Article  Google Scholar 

  8. Hao, G.: Predictor antenna systems: exploiting channel state information for vehicle communications. Thesis of Chalmers University of Technology, Sweden, May 2020. arXiv: abs/2005.09758

    Google Scholar 

  9. Luo, C., Ji, J., Wang, Q., Chen, X., Li, P.: Channel state information prediction for 5G wireless communications: a deep learning approach. IEEE Trans. Netw. Sci. Eng. 7(1), 227–236 (2020). https://doi.org/10.1109/TNSE.2018.2848960

Download references

Acknowledgments

This study is financial support in part by Ministry of Science and Technology, Taiwan under the grants MOST 108-2221-E-029-009 and MOST 109-2221-E-029-017-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang- Yie Leu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jian, YC., Chung, MS., Susanto, H., Leu, F.Y. (2022). 5G Base Station Scheduling. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2022. Lecture Notes in Networks and Systems, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-08819-3_33

Download citation

Publish with us

Policies and ethics