Abstract
The paper presents computational schemes of the multipoint meshless method – the numerical modeling tool that allows accurate and effective solving of boundary value problems. The main advantage of the multipoint general version is its generality – the basic relations of derivatives from the unknown function depend on the domain discretization only and are independent of the type of problem being solved. This feature allows to divide the multipoint computational strategy into two stages and is advantageous from the calculation efficiency point of view. The multipoint method algorithms applied to such engineering problems as numerical homogenization of heterogeneous materials and nonlinear analysis are developed and briefly presented. The paper is illustrated by several examples of the multipoint numerical analysis.
Keywords
- Meshless FDM
- Higher order approximation
- Multipoint method
- Homogenization
- Nonlinear analysis
- Elastic-plastic problem
This is a preview of subscription content, access via your institution.
Buying options











References
Chen, J.-S., Hillman, M., Chi, S.-W.: Meshfree methods: progress made after 20 years. J Eng Mech 143(4), 04017001 (2017)
Jaworska, I.: On the ill-conditioning in the new higher order multipoint method. Comput. Math. Appl. 66(3), 238–249 (2013)
Jaworska, I., Orkisz, J.: Higher order multipoint method – from Collatz to meshless FDM. Eng. Anal. Bound. Elem. 50, 341–351 (2015)
Orkisz, J.: Finite Difference Method (part III). In: Handbook of Computational Solid Mechanics, Springer-Verlag, 336–432 (1998)
Collatz, L.: Numerische Behandlung von Differential-gleichungen, Springer-Verlag (1955)
Atluri, S.N.: The Meshless Method (MLPG) for Domain & Bie Discretizations (2004)
Liszka, T.: An automatic grid generation in flat domain. Mech. i Komp 4, 181–186 (1981)
Schöberl, J.: NETGEN An Advancing Front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52 (1997)
Preparata, F.P., Shamos, M.I.: Computational geometry. Springer-Verlag (1985)
Jaworska, I., Milewski, S.: On two-scale analysis of heterogeneous materials by means of the meshless finite difference method. Int. J. Multiscale Comput. Eng. 14(2), 113–134 (2016)
Jaworska, I.: Higher order multipoint meshless FDM for two-scale analysis of heterogeneous materials. Int. J. Multiscale Comput. Eng. 17(3), 239–260 (2019)
Jaworska, I., Orkisz, J.: Estimation of a posteriori computational error by the higher order multipoint meshless FDM. Comput. Inform. 36, 1447–1466 (2017)
Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale first-order and second-order computational homogenizastion of microstructures towards continua. Int. J. Multiscale Comput. Eng. 1(4), 371–385 (2003)
Jaworska, I., Orkisz, J.: On nonlinear analysis by the multipoint meshless FDM. Eng. Anal. Bound. Elem. 92, 231–243 (2018)
Milewski, S., Orkisz, J.: In search of optimal acceleration approach to iterative solution methods of simultaneous algebraic equations. Comput Math Appl 68(3), 101–117 (2014)
Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. J. Sci. Comput. 17(1–4), 117–142 (2002)
Oleksy, M., Cecot, W.: Application of HP-adaptive finite element method to two-scale computation. Arch. Comput. Methods Eng. 22(1), 105–134 (2015)
Nadai, A.: Der Beginn des Fliesvorganges in einem tordierten Stab, ZAMM3, 442-454 (1923)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jaworska, I. (2022). Multipoint Meshless FD Schemes Applied to Nonlinear and Multiscale Analysis. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-08760-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08759-2
Online ISBN: 978-3-031-08760-8
eBook Packages: Computer ScienceComputer Science (R0)