Abstract
Multi Controlled Gates, with Multi Controlled Toffoli as primary example are a building block for a lot of complex quantum algorithms in the domains of discrete arithmetic, cryptography, machine learning, and image processing. However, these gates cannot be physically implemented in quantum hardware and therefore they need to be decomposed into many smaller elementary gates. In this work we analyse previously proposed circuit constructions for MCT gates and describe 6 new methods for generating MCT circuits with efficient costs, less restrictions, and improved applicability.
Keywords
- Multi-controlled Toffoli gate
- Quantum circuit
- Ancilla qubit
- Efficient quantum algorithms
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Baker, J.M., Duckering, C., Hoover, A., Chong, F.T.: Decomposing quantum generalized Toffoli with an arbitrary number of ancilla (2019)
Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457
Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019). https://doi.org/10.1103/PhysRevA.100.032328
Dirac, P.A.M.: The Principles of Quantum Mechanics. International Series of Monographs on Physics. Clarendon Press (1981)
DiVincenzo, D.P.: The physical implementation of quantum computation. Fortsch. Phys. 48(9–11), 771–783 (2000)
Gidney, C.: Using quantum gates instead of ancilla bits (2015). https://algassert.com/circuits/2015/06/22/Using-Quantum-Gates-instead-of-Ancilla-Bits.html
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC 1996), pp. 212–219. Association for Computing Machinery, New York (1996). https://doi.org/10.1145/237814.237866
He, Y., Luo, M.-X., Zhang, E., Wang, H.-K., Wang, X.-F.: Decompositions of n-qubit Toffoli gates with linear circuit complexity. Int. J. Theoret. Phys. 56(7), 2350–2361 (2017). https://doi.org/10.1007/s10773-017-3389-4
Héctor Abraham, E.A.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110
Kay, A.: Quantikz (2018). https://doi.org/10.17637/rh.7000520.v4
Krovi, H., Magniez, F., Ozols, M., Roland, J.: Quantum walks can find a marked element on any graph. Algorithmica 74(2), 851–907 (2015). https://doi.org/10.1007/s00453-015-9979-8
Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization. Phys. Rev. A 93(2) (2016). https://doi.org/10.1103/PhysRevA.93.022311
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667
Saeedi, M., Pedram, M.: Linear-depth quantum circuits for \(n\)-qubit Toffoli gates with no ancilla. Phys. Rev. A 87, 062318 (2013). https://doi.org/10.1103/PhysRevA.87.062318
Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700
Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_104
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883–887 (2001). https://doi.org/10.1038/414883a
Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511813887
Yao, X.W., Wang, H., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3) (2017). https://doi.org/10.1103/PhysRevX.7.031041
Zu, H., Dai, W., de Waele, A.: Development of dilution refrigerators-a review. Cryogenics 121, 103390 (2022). https://www.sciencedirect.com/science/article/pii/S001122752100148X
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Balauca, S., Arusoaie, A. (2022). Efficient Constructions for Simulating Multi Controlled Quantum Gates. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-08760-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08759-2
Online ISBN: 978-3-031-08760-8
eBook Packages: Computer ScienceComputer Science (R0)