Skip to main content

Efficient Constructions for Simulating Multi Controlled Quantum Gates

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13353)

Abstract

Multi Controlled Gates, with Multi Controlled Toffoli as primary example are a building block for a lot of complex quantum algorithms in the domains of discrete arithmetic, cryptography, machine learning, and image processing. However, these gates cannot be physically implemented in quantum hardware and therefore they need to be decomposed into many smaller elementary gates. In this work we analyse previously proposed circuit constructions for MCT gates and describe 6 new methods for generating MCT circuits with efficient costs, less restrictions, and improved applicability.

Keywords

  • Multi-controlled Toffoli gate
  • Quantum circuit
  • Ancilla qubit
  • Efficient quantum algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker, J.M., Duckering, C., Hoover, A., Chong, F.T.: Decomposing quantum generalized Toffoli with an arbitrary number of ancilla (2019)

    Google Scholar 

  2. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

  3. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019). https://doi.org/10.1103/PhysRevA.100.032328

    CrossRef  Google Scholar 

  4. Dirac, P.A.M.: The Principles of Quantum Mechanics. International Series of Monographs on Physics. Clarendon Press (1981)

    Google Scholar 

  5. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortsch. Phys. 48(9–11), 771–783 (2000)

    Google Scholar 

  6. Gidney, C.: Using quantum gates instead of ancilla bits (2015). https://algassert.com/circuits/2015/06/22/Using-Quantum-Gates-instead-of-Ancilla-Bits.html

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC 1996), pp. 212–219. Association for Computing Machinery, New York (1996). https://doi.org/10.1145/237814.237866

  8. He, Y., Luo, M.-X., Zhang, E., Wang, H.-K., Wang, X.-F.: Decompositions of n-qubit Toffoli gates with linear circuit complexity. Int. J. Theoret. Phys. 56(7), 2350–2361 (2017). https://doi.org/10.1007/s10773-017-3389-4

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Héctor Abraham, E.A.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

  10. Kay, A.: Quantikz (2018). https://doi.org/10.17637/rh.7000520.v4

  11. Krovi, H., Magniez, F., Ozols, M., Roland, J.: Quantum walks can find a marked element on any graph. Algorithmica 74(2), 851–907 (2015). https://doi.org/10.1007/s00453-015-9979-8

  12. Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization. Phys. Rev. A 93(2) (2016). https://doi.org/10.1103/PhysRevA.93.022311

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667

  14. Saeedi, M., Pedram, M.: Linear-depth quantum circuits for \(n\)-qubit Toffoli gates with no ancilla. Phys. Rev. A 87, 062318 (2013). https://doi.org/10.1103/PhysRevA.87.062318

  15. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

  16. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_104

    CrossRef  Google Scholar 

  17. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883–887 (2001). https://doi.org/10.1038/414883a

  18. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511813887

  19. Yao, X.W., Wang, H., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3) (2017). https://doi.org/10.1103/PhysRevX.7.031041

  20. Zu, H., Dai, W., de Waele, A.: Development of dilution refrigerators-a review. Cryogenics 121, 103390 (2022). https://www.sciencedirect.com/science/article/pii/S001122752100148X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Balauca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balauca, S., Arusoaie, A. (2022). Efficient Constructions for Simulating Multi Controlled Quantum Gates. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)