Skip to main content

CNNs with Compact Activation Function

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13351))

Included in the following conference series:


Activation function plays an important role in neural networks. We propose to use hat activation function, namely the first order B-spline, as activation function for CNNs including MgNet and ResNet. Different from commonly used activation functions like ReLU, the hat function has a compact support and no obvious spectral bias. Although spectral bias is thought to be beneficial for generalization, we show that MgNet and ResNet with hat function still exhibit a slightly better generalization performance than CNNs with ReLU function by our experiments of classification on MNIST, CIFAR10/100 and ImageNet datasets. This indicates that CNNs without spectral bias can have a good generalization capability. We also illustrate that although hat function has a small activation area which is more likely to induce vanishing gradient problem, hat CNNs with various initialization methods still works well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Basri, R., Galun, M., Geifman, A., Jacobs, D., Kasten, Y., Kritchman, S.: Frequency bias in neural networks for input of non-uniform density. In: International Conference on Machine Learning, pp. 685–694. PMLR (2020)

    Google Scholar 

  2. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  3. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  4. He, J., Xu, J.: MgNet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7), 1331–1354 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  5. He, J., Xu, J., Zhang, L., Zhu, J.: An interpretive constrained linear model for ResNet and MgNet. arXiv preprint arXiv:2112.07441 (2021)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).

    Chapter  Google Scholar 

  9. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  10. Hong, Q., Siegel, J., Tan, Q., Xu, J.: On the activation function dependence of the spectral bias of neural networks. preprint (2022)

    Google Scholar 

  11. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1–9 (2012)

    Google Scholar 

  13. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Citeseer (2013)

    Google Scholar 

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  15. Poggio, T., et al.: Theory of deep learning iii: the non-overfitting puzzle. CBMM Memo 73, 1–38 (2018)

    Google Scholar 

  16. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  17. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)

  18. Siegel, J.W., Xu, J.: Characterization of the variation spaces corresponding to shallow neural networks. arXiv preprint arXiv:2106.15002 (2021)

  19. Siegel, J.W., Xu, J.: Improved approximation properties of dictionaries and applications to neural networks. arXiv preprint arXiv:2101.12365 (2021)

  20. Soudry, D., Hoffer, E., Nacson, M.S., Gunasekar, S., Srebro, N.: The implicit bias of gradient descent on separable data. J. Mach. Learn. Res. 19(1), 2822–2878 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Trottier, L., Giguere, P., Chaib-Draa, B.: Parametric exponential linear unit for deep convolutional neural networks. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 207–214. IEEE (2017)

    Google Scholar 

  22. Xu, J.: The finite neuron method and convergence analysis. arXiv preprint arXiv:2010.01458 (2020)

  23. Xu, Z.Q.J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523 (2019)

  24. Xu, Z.J.: Understanding training and generalization in deep learning by fourier analysis. arXiv preprint arXiv:1808.04295 (2018)

Download references


The work of Jinchao Xu is supported in part by the National Science Foundation (Grant No. DMS-2111387). The work of Jianqing Zhu is supported in part by Beijing Natural Science Foundation (Grant No. Z200002). The work of Jindong Wang is supported in part by High Performance Computing Platform of Peking University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jinchao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Xu, J., Zhu, J. (2022). CNNs with Compact Activation Function. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics