Skip to main content

Calculation of Cross-correlation Function Accelerated by Tensor Cores with TensorFloat-32 Precision on Ampere GPU

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13351))

Included in the following conference series:

Abstract

The cross-correlation function appears in many fields with time-series data, and speeding up the computation is essential given the recent accumulation of significant amounts of data. The cross-correlation function can be calculated as a matrix-matrix product, and a significant speed-up can be expected utilizing Tensor Core, which is a matrix-matrix product acceleration unit of the latest NVIDIA Graphics Processing Units (GPUs). In this research, we target a new precision data type called the TensorFloat-32, which is available in the Ampere architecture. We develop a fast calculation method considering the characteristics of the cross-correlation function and TensorCore. Our method achieved a very high performance of 53.56 TFLOPS in the performance measurement assuming seismic interferometry using actual data, which is 5.97 times faster than cuBLAS, a widely used linear algebra library on NVIDIA GPUs. In addition, the accuracy of the calculation result is sufficiently high compared to the 64-bit floating-point calculation, indicating the applicability of Tensor Core operations using TensorFloat-32 for scientific calculations. Our proposed method is expected to make it possible to utilize a large amount of data more effectively in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. TC-enhanced Cross-correlation Function. https://github.com/nlnxfkl/TC-enhanced_Cross-correlation_Function. Accessed 10 Apr 2022

  2. Venu, D., Rao, N.V.K.: A cross-correlation approach to determine target range in passive radar using FM broadcast signals (2016). http://dx.doi.org/10.1109/WiSPNET.2016.7566190

  3. Alonso, D., Cusin, G., Ferreira, P.G., Pitrou, C.: Detecting the anisotropic astrophysical gravitational wave background in the presence of shot noise through cross-correlations (2020). https://doi.org/10.1103/PhysRevD.102.023002

  4. Shearer, P.M.: Global seismic event detection using a matched filter on long-period seismograms (1994). https://doi.org/10.1029/94JB00498

  5. Aso, N., Ohta, K., Ide, S.: Volcanic-like low-frequency earthquakes beneath Osaka Bay in the absence of a volcano (2011). https://doi.org/10.1029/2011GL046935

  6. Norman, M.R., et al.: Unprecedented cloud resolution in a GPU-enabled full-physics atmospheric climate simulation on OLCF’s summit supercomputer (2021). https://doi.org/10.1177/10943420211027539

  7. Ichimura, T., et al.: A fast scalable implicit solver for nonlinear time-evolution earthquake city problem on low-ordered unstructured finite elements with artificial intelligence and transprecision computing (2018). https://doi.org/10.1109/SC.2018.00052

  8. Beaucé, E., Frank, W.B., Romanenko, A.: Fast Matched Filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures (2017). https://doi.org/10.1785/0220170181

  9. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. Accessed 04 Feb 2022

  10. Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision (2018). https://doi.org/10.1109/IPDPSW.2018.00091

  11. Yamaguchi, T., Ichimura, T., Fujita, K., Kato, A., Nakagawa, S.: Matched filtering accelerated by tensor cores on Volta GPUs With improved accuracy using half-precision variables (2019). https://doi.org/10.1109/LSP.2019.2951305

  12. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html. Accessed 04 Feb 2022

  13. NVIDIA A100 Tensor Core GPU Architecture. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf. Accessed 17 Jan 2022

  14. Raihan, M.A., Goli, N., Aamodt, T.M.: Modeling deep learning accelerator enabled GPUs (2019). https://doi.org/10.1109/ISPASS.2019.00016

  15. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed 04 Feb 2022

  16. Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K.: Seismic interferometry-turning noise into signal (2006). https://doi.org/10.1190/1.2349814

  17. Wapenaar, K., Fokkema, J.: Green’s function representations for seismic interferometry (2006). https://doi.org/10.1190/1.2213955

  18. Chen, Y., Saygin, E.: Empirical Green’s function retrieval using ambient noise source-receiver interferometry (2020). https://doi.org/10.1029/2019JB018261

  19. National Research Institute For Earth Science And Disaster Resilience: NIED MOWLAS (Monitoring of Waves on Land and Seafloor) (2019). https://nied-ir.bosai.go.jp/?action=repository_uri&item_id=2151&lang=english, https://doi.org/10.17598/NIED.0009

  20. Dales, P., Audet, P., Olivier, G.: Seismic interferometry using persistent noise sources for temporal subsurface monitoring (2017). https://doi.org/10.1002/2017GL075342

  21. Voisin, C., Guzmán, M.A.R., Réfloch, A., Taruselli, M., Garambois, S.: Groundwater monitoring with passive seismic interferometry (2017). https://doi.org/10.4236/jwarp.2017.912091

  22. National Research Institute For Earth Science And Disaster Resilience: NIED K-NET, KiK-net (2019). https://nied-ir.bosai.go.jp/?action=repository_uri&item_id=2146&lang=english, https://doi.org/10.17598/NIED.0004

Download references

Acknowledgment

We acknowledge support from the Japan Society for the Promotion of Science (18H05239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuma Kikuchi , Kohei Fujita , Tsuyoshi Ichimura or Lalith Maddegedara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kikuchi, Y., Fujita, K., Ichimura, T., Hori, M., Maddegedara, L. (2022). Calculation of Cross-correlation Function Accelerated by Tensor Cores with TensorFloat-32 Precision on Ampere GPU. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics