Abstract
This article presents a new look at the problem of finding reservoirs-analogues, representing reservoirs as a network and solving the problem of finding reservoirs-analogues as a problem of finding communities in the network. The proposed network approach allows us to effectively search for a cluster of reservoirs-analogues and restore missing parameters in the target reservoir based on the found clusters of reservoirs-analogues. Also, the network approach was compared with the baseline approach and showed greater efficiency. Three approaches were also compared to restore gaps in the target reservoir using clusters of reservoirs-analogues.
Keywords
- Networks
- Community detection algorithms
- Distance metrics
- Oil and gas reservoirs
- Reservoirs-analogues
This is a preview of subscription content, access via your institution.
Buying options





References
Atay, Y., Koc, I., Babaoglu, I., Kodaz, H.: Community detection from biological and social networks: a comparative analysis of metaheuristic algorithms. Appl. Soft Comput. 50, 194–211 (2017)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Dumont, M., Reninger, P.A., Pryet, A., Martelet, G., Aunay, B., Join, J.L.: Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies. J. Appl. Geophys. 157, 1–9 (2018)
Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)
Nikitin, N.O., et al.: Automated evolutionary approach for the design of composite machine learning pipelines. Futur. Gener. Comput. Syst. 127, 109–125 (2022)
Ren, Z., Sun, L., Zhai, Q.: Improved k-means and spectral matching for hyperspectral mineral mapping. Int. J. Appl. Earth Obs. Geoinf. 91, 102154 (2020)
Rodríguez, H., Escobar, E., Embid, S., Rodriguez, N., Hegazy, M., Lake, L.: New approach to identify analogous reservoirs. SPE Econ. Manag. 6 (2013). https://doi.org/10.2118/166449-MS
Voskresenskiy, A., et al.: Variations in ranked list of reservoir analogs as an effect of search preferences. In: Saint Petersburg 2020, vol. 2020, pp. 1–5. European Association of Geoscientists & Engineers (2020)
Wang, C., Tang, W., Sun, B., Fang, J., Wang, Y.: Review on community detection algorithms in social networks. In: 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), pp. 551–555. IEEE (2015)
Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6, 1–34 (1997)
Acknowledgement
This research is financially supported by the Ministry of Science and Higher Education, agreement FSER-2021-0012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bezborodov, A., Deeva, I. (2022). Networks Clustering-Based Approach for Search of Reservoirs-Analogues. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-08754-7_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08753-0
Online ISBN: 978-3-031-08754-7
eBook Packages: Computer ScienceComputer Science (R0)