Skip to main content

Establishing Metrics to Quantify Underlying Structure in Vascular Red Blood Cell Distributions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Abstract

Simulations of the microvasculature can elucidate the effects of various blood flow parameters on micro-scale cellular and fluid phenomena. At this scale, the non-Newtonian behavior of blood requires the use of explicit cell models, which are necessary for capturing the full dynamics of cell motion and interactions. Over the last few decades, fluid-structure interaction models have emerged as a method to accurately capture the behavior of deformable cells in the blood. However, as computational power increases and systems with millions of red blood cells can be simulated, it is important to note that varying spatial distributions of cells may affect simulation outcomes. Since a single simulation may not represent the ensemble behavior, many different configurations may need to be sampled to adequately assess the entire collection of potential cell arrangements. In order to determine both the number of distributions needed and which ones to run, we must first establish methods to identify well-generated, randomly-placed cell distributions and to quantify distinct cell configurations. In this work, we utilize metrics to assess 1) the presence of any underlying structure to the initial cell distribution and 2) similarity between cell configurations. We propose the use of the radial distribution function to identify long-range structure in a cell configuration and apply it to a randomly-distributed and structured set of red blood cells. To quantify spatial similarity between two configurations, we make use of the Jaccard index, and characterize sets of red blood cell and sphere initializations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tangelder, G.J., Slaaf, D.W., Muijtjens, A., Arts, T., Oude Egbrink, M., Reneman, R.S.: Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery. Circ. Res. 59(5), 505–514 (1986)

    Article  Google Scholar 

  2. Pries, A.R., Neuhaus, D., Gaehtgens, P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol.-Heart Circ. Physiol. 263(6), H1770–H1778 (1992)

    Article  Google Scholar 

  3. Bishop, J.J., Nance, P.R., Popel, A.S., Intaglietta, M., Johnson, P.C.: Effect of erythrocyte aggregation on velocity profiles in venules. Am. J. Physiol.-Heart Circ. Physiol. 280(1), H222–H236 (2001)

    Article  Google Scholar 

  4. Panés, J., Perry, M., Granger, D.N.: Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br. J. Pharmacol. 126(3), 537 (1999)

    Article  Google Scholar 

  5. Peskin, C.S.: The immersed boundary method. Acta numerica 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  6. Pivkin, I.V., Karniadakis, G.E.: Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101(11), 118105 (2008)

    Article  Google Scholar 

  7. Krüger, T., Holmes, D., Coveney, P.V.: Deformability-based red blood cell separation in deterministic lateral displacement devices-a simulation study. Biomicrofluidics 8(5), 054114 (2014)

    Google Scholar 

  8. Fedosov, D.A., Noguchi, H., Gompper, G.: Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 13(2), 239–258 (2013). https://doi.org/10.1007/s10237-013-0497-9

    Article  Google Scholar 

  9. Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J . 92(6), 1858–1877 (2007)

    Article  Google Scholar 

  10. Pepona, M., et al.: Investigating the interaction between circulating tumor cells and local hydrodynamics via experiment and simulations. Cell. Mol. Bioeng. 13(5), 527–540 (2020)

    Article  Google Scholar 

  11. Lei, H., Karniadakis, G.E.: Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J . 102(2), 185–194 (2012)

    Article  Google Scholar 

  12. Czaja, B., Gutierrez, M., Závodszky, G., de Kanter, D., Hoekstra, A., Eniola-Adefeso, O.: The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLoS Comput. Biol. 16(3), e1007716 (2020)

    Article  Google Scholar 

  13. Balogh, P., Bagchi, P.: Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks. Phys. Fluids 30(5), 051902 (2018)

    Article  Google Scholar 

  14. Yang, J., Yoo, S.S., Lee, T.R.: Effect of fractional blood flow on plasma skimming in the microvasculature. Phys. Rev. E 95(4), 040401 (2017)

    Article  Google Scholar 

  15. Zhang, J., Johnson, P.C., Popel, A.S.: Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 41(1), 47–55 (2008)

    Article  Google Scholar 

  16. Fedosov, D.A., Caswell, B., Popel, A.S., Karniadakis, G.E.: Blood flow and cell-free layer in microvessels. Microcirculation 17(8), 615–628 (2010)

    Article  Google Scholar 

  17. Katanov, D., Gompper, G., Fedosov, D.A.: Microvascular blood flow resistance: role of red blood cell migration and dispersion. Microvasc. Res. 99, 57–66 (2015)

    Article  Google Scholar 

  18. Vahidkhah, K., Diamond, S.L., Bagchi, P.: Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J . 106(11), 2529–2540 (2014)

    Article  Google Scholar 

  19. Fitzgibbon, S., Spann, A.P., Qi, Q.M., Shaqfeh, E.S.: In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Biophys. J . 108(10), 2601–2608 (2015)

    Article  Google Scholar 

  20. Jain, A., Munn, L.L.: Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4(9), e7104 (2009)

    Article  Google Scholar 

  21. Freund, J.B.: Leukocyte margination in a model microvessel. Phys. Fluids 19(2), 023301 (2007)

    Article  Google Scholar 

  22. Roychowdhury, S., Gounley, J., Randles, A.: Evaluating the influence of hemorheological parameters on circulating tumor cell trajectory and simulation time. In: Proceedings of the Platform for Advanced Scientific Computing Conference, pp. 1–10 (2020)

    Google Scholar 

  23. Xiao, L.L., Lin, C.S., Chen, S., Liu, Y., Fu, B.M., Yan, W.W.: Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Biomech. Model. Mechanobiol. 19(1), 159–171 (2019). https://doi.org/10.1007/s10237-019-01202-9

    Article  Google Scholar 

  24. Gounley, J., Draeger, E.W., Randles, A.: Numerical simulation of a compound capsule in a constricted microchannel. Procedia Comput. Sci. 108, 175–184 (2017)

    Article  Google Scholar 

  25. Balogh, P., Gounley, J., Roychowdhury, S., Randles, A.: A data-driven approach to modeling cancer cell mechanics during microcirculatory transport. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  26. Grinberg, L., et al.: A new computational paradigm in multiscale simulations: application to brain blood flow. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–5 (2011)

    Google Scholar 

  27. Ames, J., Puleri, D.F., Balogh, P., Gounley, J., Draeger, E.W., Randles, A.: Multi-GPU immersed boundary method hemodynamics simulations. J. Comput. Sci. 44, 101–153 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lu, L., Morse, M.J., Rahimian, A., Stadler, G., Zorin, D.: Scalable simulation of realistic volume fraction red blood cell flows through vascular networks. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–30 (2019)

    Google Scholar 

  29. Gounley, J., Draeger, E.W., Randles, A.: Immersed boundary method halo exchange in a hemodynamics application. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11536, pp. 441–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22734-0_32

    Chapter  Google Scholar 

  30. Xiao, L., Liu, Y., Chen, S., Fu, B.: Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech. Model. Mechanobiol. 16(2), 597–610 (2017)

    Article  Google Scholar 

  31. Stella, L., Melchionna, S.: Equilibration and sampling in molecular dynamics simulations of biomolecules. J. Chem. Phys. 109(23), 10115–10117 (1998)

    Article  Google Scholar 

  32. Gordiz, K., Singh, D.J., Henry, A.: Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity. J. Appl. Phys. 117(4), 045104 (2015)

    Google Scholar 

  33. Donev, A., et al.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004)

    Article  Google Scholar 

  34. Malmir, H., Sahimi, M., Tabar, M.: Microstructural characterization of random packings of cubic particles. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  35. Miśkiewicz, K., Banasiak, R., Niedostatkiewicz, M., Grudzień, K., Babout, L.: An algorithm to generate high dense packing of particles with various shapes. In: MATEC Web of Conferences, vol. 219, p. 05004. EDP Sciences (2018)

    Google Scholar 

  36. Birgin, E.G., Lobato, R.D.: A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids. Eur. J. Oper. Res. 272(2), 447–464 (2019)

    Article  MathSciNet  Google Scholar 

  37. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  38. Yeghiazaryan, V., Voiculescu, I.D.: Family of boundary overlap metrics for the evaluation of medical image segmentation. J. Med. Imaging 5(1), 015006 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Daniel Puleri and Samreen Mahmud for their feedback and discussion. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. The work of Sayan Roychowdhury and Amanda Randles was supported by the National Science Foundation under award number 1943036. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Roychowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roychowdhury, S., Draeger, E.W., Randles, A. (2022). Establishing Metrics to Quantify Underlying Structure in Vascular Red Blood Cell Distributions. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics