Skip to main content

Proof Complexity of Monotone Branching Programs

  • Conference paper
  • First Online:
Revolutions and Revelations in Computability (CiE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13359))

Included in the following conference series:

  • 375 Accesses

Abstract

We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas, but constitute a positive version of (non-uniform) \(\mathbf {N}\mathbf {L}\), rather than \(\mathbf {P}\) or \(\mathbf {NC}^{1}\), respectively.

The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system \(\mathsf {e}\mathsf {LNDT}\). Our system \(\mathsf {e}\mathsf {LNDT}^{+}\) is obtained by restricting their systems to a positive syntax, similarly to how the ‘monotone sequent calculus’ \(\mathsf {MLK}\) is obtained from the usual sequent calculus \(\mathsf {LK}\) by restricting to negation-free formulas.

Our main result is that \(\mathsf {e}\mathsf {LNDT}^{+}\) polynomially simulates \(\mathsf {e}\mathsf {LNDT}\) over positive sequents. Our proof method is inspired by a similar result for \(\mathsf {MLK}\) by Atserias, Galesi and Pudlák, that was recently improved to a bona fide polynomial simulation via works of Jeřábek and Buss, Kabanets, Kolokolova and Koucký. Along the way we formalise several properties of counting functions within \(\mathsf {e}\mathsf {LNDT}^{+}\) by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first case exemplifies a typical argument by ‘\(\mathcal {A}\)-induction’, but note also that a single cut rule between \(e_i \, \rightarrow \, A_i\) and \(A_i \, \rightarrow \, e_i\) would suffice.

References

  1. Ajtai, M., Gurevich, Y.: Monotone versus positive. J. ACM 34(4), 1004–1015 (1987). https://doi.org/10.1145/31846.31852

    Article  MathSciNet  MATH  Google Scholar 

  2. Atserias, A., Galesi, N., Gavaldá, R.: Monotone proofs of the pigeon hole principle. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 151–162. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X_13

    Chapter  Google Scholar 

  3. Atserias, A., Galesi, N., Pudlák, P.: Monotone simulations of non-monotone proofs. J. Comput. Syst. Sci. 65(4), 626–638 (2002). https://doi.org/10.1016/S0022-0000(02)00020-X

    Article  MathSciNet  MATH  Google Scholar 

  4. Beame, P., Impagliazzo, R., Krajícek, J., Pitassi, T., Pudlák, P., Woods, A.R.: Exponential lower bounds for the pigeonhole principle. In: 24th Annual ACM STOC (1992). https://doi.org/10.1145/129712.129733

  5. Buss, S., Das, A., Knop, A.: Proof complexity of systems of (non-deterministic) decision trees and branching programs. In: 28th Annual CSL. LIPIcs (2020). http://arxiv.org/abs/1910.08503

  6. Buss, S., Kabanets, V., Kolokolova, A., Koucký, M.: Expander construction in VNC1. In: 8th ITCS Conference (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.31

  7. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Log. 163, 906–917 (2012). https://doi.org/10.1016/j.apal.2011.09.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979). https://doi.org/10.2307/2273702

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, A., Delkos, A.: Proof complexity of positive branching programs. CoRR (2021). https://arxiv.org/abs/2102.06673

  10. Das, A., Oitavem, I.: A recursion-theoretic characterisation of the positive polynomial-time functions. In: 26th Annual CSL. LIPIcs (2018). http://drops.dagstuhl.de/opus/volltexte/2018/9685

  11. Grigni, M.: Structure in monotone complexity. Ph.D. thesis (1991). http://www.mathcs.emory.edu/~mic/papers/Thesis.ps.gz

  12. Grigni, M., Sipser, M.: Monotone complexity. In: LMS Symposium on Boolean Function Complexity (1992). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7667&rep=rep1&type=pdf

  13. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: 18th Annual ACM STOC (1986). https://doi.org/10.1145/12130.12132

  14. Jerábek, E.: A sorting network in bounded arithmetic. Ann. Pure Appl. Log. 162, 341–355 (2011). https://doi.org/10.1016/j.apal.2010.10.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual SCT Conference (1993). https://doi.org/10.1109/SCT.1993.336536

  16. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: 20th Annual ACM STOC (1988). https://doi.org/10.1145/62212.62265

  17. Krajícek, J.: The Cook-Reckhow definition. CoRR (2019). http://arxiv.org/abs/1909.03691

  18. Lautemann, C., Schwentick, T., Stewart, I.: Positive versions of polynomial time. Inf. Comput. 147, 145–170 (1998). https://doi.org/10.1006/inco.1998.2742

    Article  MathSciNet  MATH  Google Scholar 

  19. Lautemann, C., Schwentick, T., Stewart, I.A.: On positive P. In: 11th Annual IEEE CCC (1996). https://doi.org/10.1109/CCC.1996.507678

  20. Markov, A.A.: Minimal relay-diode bipoles for monotonic symmetric functions. Probl. Kibernetiki 8, 117–121 (1962)

    Google Scholar 

  21. Pudlák, P., Buss, S.R.: How to lie without being (easily) convicted and the length of proofs in propositional calculus. In: 3rd Annual CSL. LIPIcs (1994). https://doi.org/10.1007/BFb0022253

  22. Razborov, A.A.: Lower bounds for the monotone complexity of some boolean functions. In: Soviet Mathematics Doklady (1985). http://people.cs.uchicago.edu/~razborov/files/clique.pdf

  23. Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent. Math. Notes Acad. Sci. USSR (1985). https://link.springer.com/article/10.1007

Download references

Acknowledgements

This work was supported by a UKRI Future Leaders Fellowship, ‘Structure vs Invariants in Proofs’, project reference MR/S035540/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A., Delkos, A. (2022). Proof Complexity of Monotone Branching Programs. In: Berger, U., Franklin, J.N.Y., Manea, F., Pauly, A. (eds) Revolutions and Revelations in Computability. CiE 2022. Lecture Notes in Computer Science, vol 13359. Springer, Cham. https://doi.org/10.1007/978-3-031-08740-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08740-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08739-4

  • Online ISBN: 978-3-031-08740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics