Skip to main content

Interaction of an Incompressible Fluid with an Elastic Membrane

  • Chapter
  • First Online:
Level Set Methods for Fluid-Structure Interaction

Part of the book series: Applied Mathematical Sciences ((AMS,volume 210))

  • 452 Accesses

Abstract

This chapter defines a first class of level set methods for the interaction of a membrane or an elastic curve, with or without shear elasticity, with a fluid, both in the case of compressible and incompressible flows. It discusses time discretization methods from the point of view of stability and gives examples of algorithms and codes for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Korteweg models are often used to describe fluid media subjected to internal capillary forces [94].

  2. 2.

    http://level-set.imag.fr.

References

  1. F. Acker, R. d. R. Borges, and B. Costa. An improved WENO-Z scheme. Journal of Computational Physics, 313:726–753, 2016.

    Google Scholar 

  2. J. T. Beale and J. Strain. Locally corrected semi-Lagrangian methods for stokes flow with moving elastic interfaces. Journal of Computational Physics, 227(8):3896– 920, 2008.

    Google Scholar 

  3. T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-dimensional vesicle dynamics. Physical Review E, 72(4):041921, 2005.

    Google Scholar 

  4. T. Biben and C. Misbah. An advected-field method for deformable entities under flow. The European Physical Journal B-Condensed Matter and Complex Systems, 29(2):311–316, 2002.

    Article  Google Scholar 

  5. T. Biben and C. Misbah. Tumbling of vesicles under shear flow within an advected-field approach. Physical Review E, 67(3):031908, 2003.

    Google Scholar 

  6. D. Boffi, L. Gastaldi, and L. Heltai. Stability results and algorithmic strategies for the finite element approach to the immersed boundary method. In Numerical mathematics and advanced applications, pages 575–582. Springer, 2006.

    Google Scholar 

  7. D. Boffi, L. Gastaldi, and L. Heltai. Numerical stability of the finite element immersed boundary method. Mathematical Models and Methods in Applied Sciences, 17(10):1479–1505, 2007.

    Article  MathSciNet  Google Scholar 

  8. D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut. Computational modeling of solid tumor growth: the avascular stage. SIAM Journal on Scientific Computing, 32(4):2321–2344, 2010.

    Article  MathSciNet  Google Scholar 

  9. P. Burchard, L.-T. Cheng, B. Merriman, and S. Osher. Motion of curves in three spatial dimensions using a level set approach. Journal of Computational Physics, 170(2):720–741, 2001.

    Article  MathSciNet  Google Scholar 

  10. L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier–Stokes equations. Communications on pure and applied mathematics, 35(6):771–831, 1982.

    Article  MathSciNet  Google Scholar 

  11. M. Castro, B. Costa, and W. S. Don. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 230(5):1766–1792, 2011.

    Article  MathSciNet  Google Scholar 

  12. G.-H. Cottet and E. Maitre. A level-set formulation of immersed boundary methods for fluid–structure interaction problems. C.R. Mathématique, 338(7):581–586, 2004.

    Article  MathSciNet  Google Scholar 

  13. G.-H. Cottet and E. Maitre. A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences, 16(03):415–438, 2006.

    Article  MathSciNet  Google Scholar 

  14. G.-H. Cottet and E. Maitre. A semi-implicit level set method for multiphase flows and fluid–structure interaction problems. Journal of Computational Physics, 314:80–92, 2016.

    Article  MathSciNet  Google Scholar 

  15. G.-H. Cottet, E. Maitre, and T. Milcent. Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis, 42(3):471–492, May 2008.

    Article  MathSciNet  Google Scholar 

  16. V. Doyeux. Modélisation et simulation de systèmes multi-fluides. Application aux écoulements sanguins. Thèse de doctorat, Université Grenoble Alpes, 2014.

    Google Scholar 

  17. S. Esedoglu, S. Ruuth, R. Tsai, et al. Diffusion generated motion using signed distance functions. Journal of Computational Physics, 229(4):1017–1042, 2010.

    Article  MathSciNet  Google Scholar 

  18. L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press, 1992.

    MATH  Google Scholar 

  19. A. Gravouil, N. Möes, and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets - part II: level set update. International Journal for Numerical Methods in Engineering, 53:2569–2586, 2002.

    Article  Google Scholar 

  20. B. E. Griffith and C. S. Peskin. On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. Journal of Computational Physics, 208(1):75–105, 2005.

    Article  MathSciNet  Google Scholar 

  21. F. Hecht. New development in freefem++. J. Numer. Math., 20(3–4):251–265, 2012.

    MathSciNet  MATH  Google Scholar 

  22. D. J. Korteweg. Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences exactes et naturelles, 6:1–24, 1901.

    MATH  Google Scholar 

  23. L. Lee and R. J. LeVeque. An immersed interface method for incompressible navier–stokes equations. SIAM Journal on Scientific Computing, 25(3):832–856, 2003.

    Article  MathSciNet  Google Scholar 

  24. R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31(4):1019–1044, 1994.

    Article  MathSciNet  Google Scholar 

  25. E. Maitre, T. Milcent, G.-H. Cottet, A. Raoult, and Y. Usson. Applications of level set methods in computational biophysics. Mathematical and Computer Modelling, 49(11):2161–2169, 2009.

    Article  MathSciNet  Google Scholar 

  26. E. Maitre, C. Misbah, P. Peyla, and A. Raoult. Comparison between advected-field and level-set methods in the study of vesicle dynamics. Physica D: Nonlinear Phenomena, 241(13):1146–1157, 2012.

    Article  Google Scholar 

  27. B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A level set approach. Journal of Computational Physics, 112(2):334–363, 1994.

    Article  MathSciNet  Google Scholar 

  28. T. Metivet, V. Chabannes, M. Ismail, and C. Prud’homme. High-order finite-element framework for the efficient simulation of multifluid flows. Mathematics, 6(10):203, 2018.

    Google Scholar 

  29. T. Milcent. Une approche eulérienne du couplage fluide-structure, analyse mathématique et applications en biomécanique. Thèse de doctorat, Université Grenoble Alpes, 2009.

    Google Scholar 

  30. T. Milcent and E. Maitre. Eulerian model of immersed elastic surfaces with full membrane elasticity. Communications in Mathematical Sciences, 14(3):857–881, 2016.

    Article  MathSciNet  Google Scholar 

  31. C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3):220–252, 1977.

    Article  MathSciNet  Google Scholar 

  32. C. S. Peskin. The immersed boundary method. Acta numerica, 11:479–517, 2002.

    Article  MathSciNet  Google Scholar 

  33. C. S. Peskin and B. F. Printz. Improved volume conservation in the computation of flows with immersed elastic boundaries. Journal of computational physics, 105(1):33–46, 1993.

    Article  MathSciNet  Google Scholar 

  34. A. Sengers. Schémas semi-implicites et de diffusion-redistanciation pour la dynamique des globules rouges. Thèse de doctorat, Université Grenoble Alpes, 2019.

    Google Scholar 

  35. V. A. Solonnikov. Estimates for solutions of nonstationary Navier–Stokes equations. Journal of Mathematical Sciences, 8(4):467–529, 1977.

    MATH  Google Scholar 

  36. J. M. Stockie and B. R. Wetton. Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. Journal of Computational Physics, 154(1):41–64, 1999.

    Article  Google Scholar 

  37. J. M. Stockie and B. T. Wetton. Stability analysis for the immersed fiber problem. SIAM Journal on Applied Mathematics, 55(6):1577–1591, 1995.

    Article  MathSciNet  Google Scholar 

  38. M. Sy, D. Bresch, F. Guillén-González, J. Lemoine, and M. A. Rodríguez-Bellido. Local strong solution for the incompressible Korteweg model. Comptes rendus Mathématique, 342(3):169–174, 2006.

    Article  MathSciNet  Google Scholar 

  39. J. Walter, A.-V. Salsac, D. Barthès-Biesel, and P. Le Tallec. Coupling of finite element and boundary integral methods for a capsule in a stokes flow. International journal for numerical methods in engineering, 83(7):829–850, 2010.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cottet, GH., Maitre, E., Milcent, T. (2022). Interaction of an Incompressible Fluid with an Elastic Membrane. In: Level Set Methods for Fluid-Structure Interaction. Applied Mathematical Sciences, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-031-08659-5_3

Download citation

Publish with us

Policies and ethics