Skip to main content

Accessible Adaptable Indoor Routing for People with Disabilities

  • Conference paper
  • First Online:
Computers Helping People with Special Needs (ICCHP-AAATE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13341))

Abstract

For people with disabilities, indoor routing approaches have to take the specific requirements of the target user group into account. Depending on the needs of the individual, certain objects and indoor features can present insurmountable barriers and hence, should be avoided when generating indoor routes. Research in the field of indoor routing for people with disabilities has been going on for several years, but most approaches focus on one specific disability and do not evaluate designed systems with the target user group. Therefore, we propose an accessible, adaptable indoor routing algorithm for people with disabilities. The designed system is evaluated in a user study with people with blindness and mobility impairments using a Wizard of Oz approach. Results indicate a good acceptance of the designed routing system.

F. Lüders, J. Striegl and J. Schmalfuß-Schwarz—The authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wheelmap.org, https://wheelmap.org/, Access date: 22.03.2022.

  2. 2.

    AccessibleMaps, https://www.accessiblemaps.de/, Access date: 22.03.2022.

  3. 3.

    OpenStreetMap.org, https://www.openstreetmap.org, Access date: 31.03.2022.

  4. 4.

    OpenLevelUp.net, https://openlevelup.net/#19/51.02546/13.72293, Access date: 31.03.2022.

References

  1. Abu Doush, I., Alshatnawi, S., Al-Tamimi, A.K., Alhasan, B., Hamasha, S.: ISAB: integrated indoor navigation system for the blind. Interact. Comput. 29(2), 181–202 (2016), ISSN 0953–5438

    Google Scholar 

  2. Afyouni, I., Ray, C., Christophe, C.: Spatial models for context-aware indoor navigation systems: a survey. J. Spatial Inf. Sci. 1(4), 85–123 (2012)

    Google Scholar 

  3. Butz, A., Baus, J., Krüger, A., Lohse, M.: A hybrid indoor navigation system. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, pp. 25–32, IUI 2001, Association for Computing Machinery (2001), ISBN 978-1-58113-325-7

    Google Scholar 

  4. Delnevo, G., Monti, L., Vignola, F., Salomoni, P., Mirri, S.: Almawhere: a prototype of accessible indoor wayfinding and navigation system. In: 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2018)

    Google Scholar 

  5. Dudas, P.M., Ghafourian, M., Karimi, H.A.: ONALIN: ontology and algorithm for indoor routing. In: 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 720–725 (2009), ISSN 2375–0324

    Google Scholar 

  6. Engel, C., et al.: Travelling more independently: a requirements analysis for accessible journeys to unknown buildings for people with visual impairments. In: The 22nd International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–11, ASSETS 2020, Association for Computing Machinery (2020), ISBN 978-1-4503-7103-2

    Google Scholar 

  7. Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: a survey. Interact. Comput. 25(1) (2013), ISSN 1873–7951

    Google Scholar 

  8. Froehlich, J.E., et al.: Grand challenges in accessible maps. Universal Interact. 26(2), 78–81 (2019), ISSN 1072–5520

    Google Scholar 

  9. Giudice, N.A., Whalen, W.E., Riehle, T.H., Anderson, S.M., Doore, S.A.: Evaluation of an accessible, real-time, and infrastructure-free indoor navigation system by users who are blind in the mall of America. J. Vis. Visual Impairment Blindness 113(2), 140–155 (2019)

    Article  Google Scholar 

  10. Hashemi, M., Karimi, H.A.: Indoor spatial model and accessibility index for emergency evacuation of people with disabilities. J. Comput. Civil Eng. 30(4), 04015056 (2016)

    Article  Google Scholar 

  11. Holone, H., Misund, G.: People helping computers helping people: navigation for people with mobility problems by sharing accessibility annotations. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1093–1100. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70540-6_164

    Chapter  Google Scholar 

  12. Jeamwatthanachai, W., Wald, M., Wills, G.: Indoor navigation by blind people: behaviors and challenges in unfamiliar spaces and buildings. British J. Vis. Impairment 37(2), 140–153 (2019)

    Article  Google Scholar 

  13. Kunhoth, J., Karkar, A., Al-Maadeed, S., Al-Ali, A.: Indoor positioning and wayfinding systems: a survey. Human-centric Comput. Inf. Sci. 10(1), 18 (2020), ISSN 2192–1962

    Google Scholar 

  14. May, A.J., Ross, T., Bayer, S.H., Tarkiainen, M.J.: Pedestrian navigation aids: information requirements and design implications. Pers. Ubiquitous Comput. 7(6), 331–338 (2003), ISSN 1617–4909, 1617–4917

    Google Scholar 

  15. Mirvahabi, S.S., Abbaspour, R.A.: Automatic extraction of IndoorGML core model from OpenStreetMap. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W5, 40, 459–462 (2015), ISSN 2194–9034

    Google Scholar 

  16. Open Geospatial Consortium: OGC® IndoorGML 1.1 (2020), https://docs.ogc.org/is/19-011r4/19-011r4.pdf. Accessed 1 Feb 2022

  17. Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen. Spektrum-Lehrbuch, Spektrum, Akad. Verl, 3, überarb. aufl edn. (1996), ISBN 978-3-8274-0110-6

    Google Scholar 

  18. Park, S., Yu, K., Kim, J.: Data model for IndoorGML extension to support indoor navigation of people with mobility disabilities. ISPRS Int. J. Geo-Inf. 9(2), 66 (2020)

    Article  Google Scholar 

  19. Petrie, H., Johnson, V., Strothotte, T., Raab, A., Fritz, S., Michel, R.: MoBIC: designing a travel aid for blind and elderly people. J. Navigation 49(1), 45–52 (1996), ISSN 0373–4633, 1469–7785

    Google Scholar 

  20. Pielot, M., Boll, S.: “In Fifty Metres Turn Left": why turn-by-turn instructions fail pedestrians. In: Workshop at MobileHCI 2010, Tuesday, September 7, 2010, Lisbon, Portugal, pp. 26–28 (2010)

    Google Scholar 

  21. Ross, T., May, A., Thompson, S.: The use of landmarks in pedestrian navigation instructions and the effects of context. In: Brewster, S., Dunlop, M. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 300–304. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28637-0_26

    Chapter  Google Scholar 

  22. Schmalfuß-Schwarz, J., Loitsch, C., Weber, G.: Considering time-critical barriers in indoor routing for people with disabilities. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) ICCHP 2020. LNCS, vol. 12377, pp. 315–322. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58805-2_37

  23. Striegl, J., Lotisch, C., Schmalfuss-Schwarz, J., Weber, G.: Analysis of Indoor Maps accounting the needs of people with impairments. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) ICCHP 2020. LNCS, vol. 12377, pp. 305–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58805-2_36

    Chapter  Google Scholar 

  24. Swobodzinski, M., Raubal, M.: An indoor routing algorithm for the blind: development and comparison to a routing algorithm for the sighted. Int. J. Geographical Inf. Sci. 23(10), 1315–1343 (2009), ISSN 1365–8816

    Google Scholar 

  25. Völkel, T., Weber, G.: RouteCheckr: personalized multicriteria routing for mobility impaired pedestrians. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 185–192, Assets 2008, Association for Computing Machinery (2008), ISBN 978-1-59593-976-0

    Google Scholar 

  26. Weyrer, T.N., Hochmair, H.H., Paulus, G.: Intermodal door-to-door routing for people with physical impairments in a web-based, open-source platform. Transp. Res. Rec. 2469(1), 108–119 (2014)

    Article  Google Scholar 

  27. Zlatanova, S., Sithole, G., Nakagawa, M., Zhu, Q.: Problems in indoor mapping and modelling. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-4/W4, 63–68 (2013), ISSN 2194–9034

    Google Scholar 

Download references

Acknowledgement

This work was partially funded by the Federal Ministry of Labour and Social Affairs (BMAS) under the grant number 01KM151112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Striegl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüders, F., Striegl, J., Schmalfuß-Schwarz, J., Loitsch, C., Weber, G. (2022). Accessible Adaptable Indoor Routing for People with Disabilities. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds) Computers Helping People with Special Needs. ICCHP-AAATE 2022. Lecture Notes in Computer Science, vol 13341. Springer, Cham. https://doi.org/10.1007/978-3-031-08648-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08648-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08647-2

  • Online ISBN: 978-3-031-08648-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics